- u-net系列算法
㡽闧㔯
人工智能算法
语义分割M整体结构:M概述就是编码解码过程简单但是很实用,应用广起初是做医学方向,现在也是U-net主要网络结构:还引入了特征拼接操作M以前我们都是加法,现在全都要这么简单的结构就能把分割任务做好U-net++整体网络结构:特征融合,拼接更全面其实跟densenet思想一致把能拼能凑的特征全用上就是升级版了U-net++DeepSupervision:也是很常见的事,多输出损失由多个位置计算,再更
- 图像识别技术与应用课后总结(20)
一元钱面包
人工智能
图像分割概念图像分割是把图像中不同像素划分到不同类别,预测目标轮廓,属于细粒度分类。比如将图像里不同物体、背景等区分开来,就像把一幅画里的各个元素精准归类。应用场景人像抠图:能精准分离人物和背景,用于图片编辑、影视制作等,比如去除照片背景换背景。医学组织提取:在医学影像(如CT、MRI图像)中分离出不同组织,辅助疾病诊断、手术规划等。遥感图像分析:分析卫星或航空遥感图像时,区分土地、植被、建筑等不
- 【论文阅读】MMedPO: 用临床感知多模态偏好优化调整医学视觉语言模型
勤奋的小笼包
论文阅读语言模型人工智能自然语言处理chatgpt
MMedPO:用临床感知多模态偏好优化调整医学视觉语言模型1.背景2.核心问题:3.方法:3.实验结果与优势4.技术贡献与意义5.结论MMedPO:AligningMedicalVision-LanguageModelswithClinical-AwareMultimodalPreferenceOptimizationMMedPO:用临床感知多模态偏好优化调整医学视觉语言模型gitgub:地址1.
- 图像分割技术的应用
不要不开心了
计算机视觉dashpython
今天的内容为:图像分割技术与应用,以下是内容总结1.图像分割概述图像分割是指预测目标的轮廓,将不同的像素划分到不同的类别,属于非常细粒度的分类任务。其应用场景广泛,包括人像抠图、医学组织提取、遥感图像分析、自动驾驶、材料图像分析等。2.图像分割的前景与背景-物体(Things):可数的前景目标,如行人、车辆等。-事物(Stuff):不可数的背景,如天空、草地、路面等。3.图像分割的三层境界-语义分
- 计算机专业开题报告案例19: 基于spring boot的养老院信息管理系统的设计与实现
平姐设计
计算机毕业设计100套java项目实战网站开发与搭建实战项目springboot后端java计算机毕业设计养老院信息管理系统开题报告老人信息
计算机毕业设计100套微信小程序项目实战java项目实战需要源码可以滴滴我一、课题论证1.1国内外研究动态目前,基于springboot的养老院信息管理系统的研究和开发已经在国内外得到了较多关注和实践。北京大学医学部的研究人员开发了一套养老院信息管理系统,该系统可以实现对老人的生活、医疗、营养等方面的全面管理和监测。此外,南开大学、清华大学等高校也都开展了相关研究。其中就有采取建立于微信小程序平台
- 《炫动漫》杂志社炫动漫杂志社炫动漫编辑部2024年第1期目录
QQ296078736
python
理论新知探究中职班主任德育能力提升策略(1)叶荣琳基于核心素养下以问题为驱动的高中数学教学评一体化的课堂教学探究(4)鹿园园农村初中英语作业设计与批阅方式的创新使用(7)侯成英新课改背景下初中物理教学方法创新策略探究(10)李传荣“双减”背景下构建初中数学高效课堂的策略(13)陈苏婷精神医学本科生参加心理剧团体课程的教学效果研究(16)查莉珺;王语含;陈虹;屈远;胡华提质增效:《机械识图》高职复习
- 知识库中的知识如何进行分类和标签管理?
自不量力的A同学
人工智能
知识库中的知识如何进行分类和标签管理?基于主题分类明确主题层级:首先确定主要的知识主题领域,如在一个企业知识库中,可以分为“人力资源”“市场营销”“技术研发”等大主题。然后在每个大主题下细分小主题,例如在“人力资源”主题下可以有“招聘”“培训”“绩效考核”等子主题。这样的层级分类有助于用户快速定位到自己需要的知识领域。参考行业标准和最佳实践:按照行业内公认的分类标准来划分知识。以医学知识库为例,可
- 医图论文 CVPR‘24 | 适应医学图像中泛化异常检测的视觉-语言模型
小白学视觉
医学图像处理论文解读语言模型人工智能计算机视觉医学图像顶会医学图像处理CVPR论文解读
论文信息题目:AdaptingVisual-LanguageModelsforGeneralizableAnomalyDetectioninMedicalImages适应医学图像中泛化异常检测的视觉-语言模型作者:ChaoqinHuang,AofanJiang,JinghaoFeng,YaZhang,XinchaoWang,YanfengWang源码:https://github.com/Medi
- 智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算【超级详细版】
AI筑梦师
计算机视觉算法深度学习人工智能机器学习计算机视觉python
智能形状匹配技术全解析:从经典算法到深度学习与神经形态计算1.引言1.1研究背景在计算机视觉、模式识别、医学影像分析和自动驾驶等领域,形状匹配是核心任务之一。然而,现实世界的形状往往存在可变性(Variability),主要体现在以下几个方面:形变(Deformation):物体可能由于柔性材料、外力作用或生物运动发生非刚性形变。尺度变化(ScaleVariation):目标形状在不同场景下可能大
- 【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破
寻道AI小兵
AI大模型前沿技术追踪人工智能语言模型AIGC
系列篇章No.文章1【AI大模型前沿】深度剖析瑞智病理大模型RuiPath:如何革新癌症病理诊断技术2【AI大模型前沿】清华大学CLAMP-3:多模态技术引领音乐检索新潮流3【AI大模型前沿】浙大携手阿里推出HealthGPT:医学视觉语言大模型助力智能医疗新突破目录系列篇章前言一、项目概述二、技术原理(一)异构低秩适应(H-LoRA)(二)分层视觉感知(HVP)(三)三阶段学习策略(TLS)三、
- 深度学习在医学影像分析中的应用:DeepSeek系统的实践与探索
Evaporator Core
#深度学习#DeepSeek快速入门DeepSeek进阶开发与应用深度学习人工智能
随着人工智能技术的迅猛发展,深度学习在医学领域的应用逐渐成为研究热点。医学影像分析作为医疗诊断的重要组成部分,正受益于深度学习技术的突破。DeepSeek系统是一种基于深度学习的医学影像分析平台,旨在通过高效、精准的算法辅助医生进行疾病诊断和治疗决策。本文将深入探讨DeepSeek系统的技术原理、实现方法及其在医学影像分析中的实际应用,并结合代码示例展示其核心功能。1.DeepSeek系统的技术架
- 消融实验(Ablation Study)
xwhking
深度学习机器学习深度学习消融实验
消融实验(AblationStudy)定义:消融实验是一种科学研究方法,通过逐步移除模型、算法或系统中的某个组件(如模块、层、特征、数据等),观察其对整体性能的影响,从而验证该组件的必要性和有效性。其名称来源于医学领域的“消融术”(切除部分组织以研究功能),在计算机视觉、机器学习和深度学习中被广泛用于分析模型设计。为什么要做消融实验?1.验证组件的有效性核心目的:确认模型中某个设计(如注意力机制、
- 老人痉挛性斜颈:健康饮食助力缓解症状
全力以赴66
生活
痉挛性斜颈是一种神经系统疾病,表现为颈部肌肉不自主收缩,导致头部歪斜或转动困难。老年人由于身体机能下降,更容易受到这种疾病的困扰。虽然痉挛性斜颈的治疗需要结合医学手段,但通过健康饮食,可以辅助缓解症状,改善生活质量。1.增加镁的摄入:放松肌肉镁是一种天然的肌肉松弛剂,能够帮助缓解肌肉紧张和痉挛。痉挛性斜颈患者通常伴有颈部肌肉过度收缩,补充镁有助于放松肌肉。推荐食物:绿叶蔬菜(如菠菜、羽衣甘蓝)。坚
- 基于生成对抗网络(GAN)的图像超分辨率实战:从SRGAN到ESRGAN
Evaporator Core
#深度学习强化学习生成模型生成对抗网络人工智能神经网络
图像超分辨率(ImageSuper-Resolution)是一种通过算法将低分辨率图像转换为高分辨率图像的技术,广泛应用于医学影像、卫星图像和视频增强等领域。生成对抗网络(GAN)是图像超分辨率的经典方法,而增强型超分辨率生成对抗网络(ESRGAN)则通过引入残差网络和感知损失进一步提升了图像质量。本文将通过一个完整的实战案例,展示如何使用SRGAN和ESRGAN进行图像超分辨率,并提供详细的代码
- 详解 FO-DICOM:医疗影像处理的强大工具
猿享天开
DICOM医学影像专业知识精讲人工智能
在现代医疗领域,DICOM(数字成像和通信医学)标准是用于存储和传输医学影像的广泛采用的协议。FellowOakDICOM(简称FO-DICOM)是一个功能齐全的.NET库,专门用于处理DICOM文件和协议。本文将详细介绍FO-DICOM的功能、优点以及在开发医疗影像应用中的应用。主要功能1.DICOM文件操作FO-DICOM提供了全面的方法来处理DICOM文件。开发者可以通过同步或异步的方式读取
- DeepBranchTracer:一种使用多特征学习进行曲线结构重建的通用方法
数据集
2024-02-02,由刘超、赵婷、郑能干一起提出了一种名为DeepBranchTracer的新型方法,是一种高效、通用的曲线结构重建方法,适用于多种2D和3D图像数据集。通过结合图像特征和几何特征,显著提高了重建的准确性和连续性。一、研究背景曲线结构(curvilinearstructures)是图像中常见的几何元素,广泛应用于医学图像中的神经分支和血管,以及遥感图像中的道路等。从图像中重建这些
- python网格插值站点_在python中,在二维零网格上两点之间插值一条值线
weixin_39965490
python网格插值站点
TLDR:在2dnumpy数组中找到2个点后,如何在0数组中在它们之间插值一条1行?在上下文:目前我正在尝试从二值化的医学图像数据(0和1)对一个3d数组执行2d操作。最终目标是在填充体素/像素(即第一个和最后一个实例)的起点和终点之间添加一条1s的线。在为此,我使用SimpleITK分割一行,然后将其转换为numpy数组。在其他示例之后,我编写了返回一组数组的函数,这些数组显示填充(1)个像素和
- YOLO11改进-模块-引入CMUNeXt Block 增强全局信息
一勺汤
YOLOv11模型改进系列网络YOLO目标检测模块魔改YOLOv11YOLOV11模型改进
在医学图像分割领域面临诸多问题,如U形架构卷积网络难以提取全局信息,混合架构因计算资源受限在实际医疗场景应用受阻,轻量化网络在保证性能与提取全局信息上存在矛盾。因此,设计了CMUNeXtBlock,CMUNeXtBlock采用大核深度可分离卷积替代普通卷积来提取全局信息,凭借深度可分离卷积减少参数和计算成本以维持轻量化,同时综合利用卷积归纳偏置和全局信息提取能力,有效解决了这些问题。代码:http
- 23章9节:分层随机抽样及其在R语言中的实现与验证
DAT|R科学与人工智能
用R探索医药数据科学r语言开发语言r-4.2.1机器学习人工智能算法
在统计学和数据科学的实际工作中,抽样方法始终扮演着至关重要的角色。如何从庞大的总体中获取具有代表性的样本,一直是数据分析过程中需要面对的核心问题之一。分层随机抽样作为一种常用的抽样方法,因其能够针对总体中的不同亚群体(层)进行有针对性的抽样,从而提高样本代表性、降低抽样误差,被广泛应用于社会调查、市场研究、医学试验等各个领域。本文旨在系统地阐述分层随机抽样的理论基础、抽样方法及其在R语言中的实现,
- 多分类—微调DistilBERT对生物医学文本进行实验方法多分类:Automated Text Mining of Experimental Methodologies from Biomedical
小小帅AIGC
informationextraction人工智能自然语言处理语言模型多分类学术领域生物医学
AutomatedTextMiningofExperimentalMethodologiesfromBiomedicalLiterature从生物医学文献中自动挖掘实验方法文本paper:https://arxiv.org/abs/2404.13779github:本文做的就是微调DistilBERT去做多分类任务,训练自己的数据集,分类每个句子对应的实验方法。没有什么讲的。文章目录~1.背景动机
- 医学文本分析中的命名实体识别:从理论到实践
软件职业规划
语言模型unity人工智能
1.数据预处理数据预处理是医学命名实体识别系统的基础步骤,其质量直接影响模型的训练效果和最终性能。数据预处理主要包括医学文本的标注、清洗以及数据增强三个方面。1.1医学文本的标注标注是数据预处理中的关键环节,其目的是将医学文本中的实体明确标记出来,以便模型能够学习到实体的特征和边界。标注的方式通常采用BIO标注法。1.1.1BIO标注法BIO标注法是一种广泛应用于命名实体识别任务的标注方式,它通过
- 基于Transformer的医学文本分类:从BERT到BioBERT
Evaporator Core
人工智能#深度学习#DeepSeek快速入门transformer分类bert
随着自然语言处理(NLP)技术的快速发展,Transformer模型在文本分类、情感分析、机器翻译等任务中取得了显著成果。在医学领域,文本数据(如电子病历、医学文献、临床报告)具有高度的专业性和复杂性,传统的NLP方法往往难以处理。Transformer模型,尤其是BERT及其变体,通过预训练和微调的方式,能够有效捕捉医学文本中的语义信息,为医学文本分类提供了强大的工具。本文将探讨Transfor
- 养生鲜知酒世界语意合™
花间流风
琴语言学习编程实战100讲几何学情感分析矩阵
养生鲜知酒世界语意合™介绍世界语意合™:无极养生鲜知酒™低代码爬虫插件生成平台,一切人文美篇都含共同的特点:鲜醇如酒,回味悠长,水不在深有龙则灵,山不在高有仙则灵,吐纳健身,诵致养生,气质达人,和气生财,平易近人,和悦泛函,慧极必伤,情深不寿,阳明心学,温文如玉,谦谦君子,神童晏殊启智音律宝典。琴生生物机械科技工业研究所国医学院医疗力量中心。云藏山鹰社会科学概论报告天下才气共一斗,云藏山鹰独占八分
- 定了!粉丝破800w的陈雷老师确认出席创客匠人5000人的“全球创始人IP领袖高峰论坛”
创小匠
tcp/ip大数据人工智能
正式官宣!全网粉丝800W+、中医学博士——陈雷,确认应邀参加创客匠人5000人“全球创始人IP领袖高峰论坛”,共襄知识服务领域的年度盛宴!由创客匠人发起的“全球创始人IP领袖高峰论坛”将在2024年12月26日-28日在厦门市国际博览会议中心隆重举行。大会邀请到众多行业内的顶尖大咖和领袖人物亲临现场,围绕“IP、趋势、战略、创新、增长”五大关键词,分享他们的宝贵经验和独到见解。这将是2024年底
- 医学人工智能影像诊断数据收集与整理
V搜xhliang0246
人工智能健康医疗算法
在医学领域中,人工智能(AI)尤其是深度学习技术,已经被广泛应用于医学影像的分析和诊断。为了训练这些模型,需要大量的高质量标注数据。下面我会给出一个简单的示例流程,介绍如何收集、整理和准备医学影像数据集,并提供一些基础的Python代码示例。数据收集首先,你需要收集包含医学影像的数据集。这些数据通常来自医院或研究机构,并且需要经过伦理审查和患者同意。示例数据集假设我们有一个包含肺部X光片的数据集,
- 新手PCB打样避坑指南:如何选择高性价比厂商
lboyj
人工智能大数据
在电子硬件开发中,PCB打样是验证设计可行性的关键一步。然而,面对市场上数百家PCB厂商,新手往往陷入“选厂难”的困境:既要保证质量,又要控制成本,还要兼顾交期。本文将从核心需求出发,结合行业口碑与技术实测,深度解析猎板PCB等优质厂商的优势,助你快速锁定匹配项目需求的合作伙伴。一、新手选厂的核心考量:从“踩雷”到“精准匹配”1.**工艺能力:决定设计落地的天花板**新手常误以为“低价=划算”,却
- 基于多模态大模型的不完整多组学数据特征选择策略
m0_65156252
人工智能
基于多模态大模型的不完整多组学数据特征选择策略是当前生物信息学和精准医学领域的一个前沿问题。在多组学数据中,通常包括不同层次的生物信息(如基因组、转录组、蛋白质组、代谢组等),这些数据通常存在缺失、噪声或不一致的情况。因此,如何有效地在这些不完整的数据中进行特征选择,是实现精确疾病预测和个性化治疗的关键。结合多模态大模型(如自监督学习、图神经网络、Transformer等)可以有效解决这一问题。以
- 【图像去雾】基于多尺度Retinex实现图像去雾附Matlab代码
Matlab科研辅导帮
图像处理matlab开发语言
✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍1.引言雾霾天气严重影响了人们的生活和工作,对图像的清晰度也造成了极大的破坏。图像去雾技术旨在消除图像中的雾霾,恢复图像的真实色彩和细节,在交通监控、遥感成像、医学影像等领域具有广泛的应用价值。近年来,基于Retinex理论的图像去雾方法取得了
- 计算机视觉算法实战——图像配准(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.领域简介图像配准(ImageRegistration)是计算机视觉中的一个重要研究方向,旨在将两幅或多幅图像在空间上对齐。这些图像可能来自不同的传感器、不同的时间或不同的视角。图像配准在医学影像、遥感、自动驾驶、机器人导航等领域有着广泛的应用。其核心目标是通过几何变换(如平移、旋转
- 久和生医资产审核稳步推进,官方发声力破谣言迷雾
都市前线
人工智能
在生物医学领域,久和生医的名字可谓耳熟能详。近日,该公司资产审核工作的最新进展再次引发了业界的广泛关注。自2月23日起,久和生医正式拉开了资产审核的序幕,并计划于3月4日圆满收官,随后将进入拨款提现阶段。然而,在这一过程中,网络上谣言四起,让不少会员心生疑虑。对此,久和生医官方及时发声,力破谣言迷雾,为会员吃下定心丸。资产审核,对于任何一家企业来说,都是一项至关重要且严谨的工作。久和生医自然也不例
- eclipse maven
IXHONG
eclipse
eclipse中使用maven插件的时候,运行run as maven build的时候报错
-Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.
可以设一个环境变量M2_HOME指
- timer cancel方法的一个小实例
alleni123
多线程timer
package com.lj.timer;
import java.util.Date;
import java.util.Timer;
import java.util.TimerTask;
public class MyTimer extends TimerTask
{
private int a;
private Timer timer;
pub
- MySQL数据库在Linux下的安装
ducklsl
mysql
1.建好一个专门放置MySQL的目录
/mysql/db数据库目录
/mysql/data数据库数据文件目录
2.配置用户,添加专门的MySQL管理用户
>groupadd mysql ----添加用户组
>useradd -g mysql mysql ----在mysql用户组中添加一个mysql用户
3.配置,生成并安装MySQL
>cmake -D
- spring------>>cvc-elt.1: Cannot find the declaration of element
Array_06
springbean
将--------
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3
- maven发布第三方jar的一些问题
cugfy
maven
maven中发布 第三方jar到nexus仓库使用的是 deploy:deploy-file命令
有许多参数,具体可查看
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.html
以下是一个例子:
mvn deploy:deploy-file -DgroupId=xpp3
- MYSQL下载及安装
357029540
mysql
好久没有去安装过MYSQL,今天自己在安装完MYSQL过后用navicat for mysql去厕测试链接的时候出现了10061的问题,因为的的MYSQL是最新版本为5.6.24,所以下载的文件夹里没有my.ini文件,所以在网上找了很多方法还是没有找到怎么解决问题,最后看到了一篇百度经验里有这个的介绍,按照其步骤也完成了安装,在这里给大家分享下这个链接的地址
- ios TableView cell的布局
张亚雄
tableview
cell.imageView.image = [UIImage imageNamed:[imageArray objectAtIndex:[indexPath row]]];
CGSize itemSize = CGSizeMake(60, 50);
&nbs
- Java编码转义
adminjun
java编码转义
import java.io.UnsupportedEncodingException;
/**
* 转换字符串的编码
*/
public class ChangeCharset {
/** 7位ASCII字符,也叫作ISO646-US、Unicode字符集的基本拉丁块 */
public static final Strin
- Tomcat 配置和spring
aijuans
spring
简介
Tomcat启动时,先找系统变量CATALINA_BASE,如果没有,则找CATALINA_HOME。然后找这个变量所指的目录下的conf文件夹,从中读取配置文件。最重要的配置文件:server.xml 。要配置tomcat,基本上了解server.xml,context.xml和web.xml。
Server.xml -- tomcat主
- Java打印当前目录下的所有子目录和文件
ayaoxinchao
递归File
其实这个没啥技术含量,大湿们不要操笑哦,只是做一个简单的记录,简单用了一下递归算法。
import java.io.File;
/**
* @author Perlin
* @date 2014-6-30
*/
public class PrintDirectory {
public static void printDirectory(File f
- linux安装mysql出现libs报冲突解决
BigBird2012
linux
linux安装mysql出现libs报冲突解决
安装mysql出现
file /usr/share/mysql/ukrainian/errmsg.sys from install of MySQL-server-5.5.33-1.linux2.6.i386 conflicts with file from package mysql-libs-5.1.61-4.el6.i686
- jedis连接池使用实例
bijian1013
redisjedis连接池jedis
实例代码:
package com.bijian.study;
import java.util.ArrayList;
import java.util.List;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoo
- 关于朋友
bingyingao
朋友兴趣爱好维持
成为朋友的必要条件:
志相同,道不合,可以成为朋友。譬如马云、周星驰一个是商人,一个是影星,可谓道不同,但都很有梦想,都要在各自领域里做到最好,当他们遇到一起,互相欣赏,可以畅谈两个小时。
志不同,道相合,也可以成为朋友。譬如有时候看到两个一个成绩很好每次考试争做第一,一个成绩很差的同学是好朋友。他们志向不相同,但他
- 【Spark七十九】Spark RDD API一
bit1129
spark
aggregate
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
//测试RDD的aggregate方法
object AggregateTest {
def main(args: Array[String]) {
val conf = new Spar
- ktap 0.1 released
bookjovi
kerneltracing
Dear,
I'm pleased to announce that ktap release v0.1, this is the first official
release of ktap project, it is expected that this release is not fully
functional or very stable and we welcome bu
- 能保存Properties文件注释的Properties工具类
BrokenDreams
properties
今天遇到一个小需求:由于java.util.Properties读取属性文件时会忽略注释,当写回去的时候,注释都没了。恰好一个项目中的配置文件会在部署后被某个Java程序修改一下,但修改了之后注释全没了,可能会给以后的参数调整带来困难。所以要解决这个问题。
&nb
- 读《研磨设计模式》-代码笔记-外观模式-Facade
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 百度百科的定义:
* Facade(外观)模式为子系统中的各类(或结构与方法)提供一个简明一致的界面,
* 隐藏子系统的复杂性,使子系统更加容易使用。他是为子系统中的一组接口所提供的一个一致的界面
*
* 可简单地
- After Effects教程收集
cherishLC
After Effects
1、中文入门
http://study.163.com/course/courseMain.htm?courseId=730009
2、videocopilot英文入门教程(中文字幕)
http://www.youku.com/playlist_show/id_17893193.html
英文原址:
http://www.videocopilot.net/basic/
素
- Linux Apache 安装过程
crabdave
apache
Linux Apache 安装过程
下载新版本:
apr-1.4.2.tar.gz(下载网站:http://apr.apache.org/download.cgi)
apr-util-1.3.9.tar.gz(下载网站:http://apr.apache.org/download.cgi)
httpd-2.2.15.tar.gz(下载网站:http://httpd.apac
- Shell学习 之 变量赋值和引用
daizj
shell变量引用赋值
本文转自:http://www.cnblogs.com/papam/articles/1548679.html
Shell编程中,使用变量无需事先声明,同时变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)
中间不能有空格,可以使用下划线(_)
不能使用标点符号
不能使用bash里的关键字(可用help命令查看保留关键字)
需要给变量赋值时,可以这么写:
- Java SE 第一讲(Java SE入门、JDK的下载与安装、第一个Java程序、Java程序的编译与执行)
dcj3sjt126com
javajdk
Java SE 第一讲:
Java SE:Java Standard Edition
Java ME: Java Mobile Edition
Java EE:Java Enterprise Edition
Java是由Sun公司推出的(今年初被Oracle公司收购)。
收购价格:74亿美金
J2SE、J2ME、J2EE
JDK:Java Development
- YII给用户登录加上验证码
dcj3sjt126com
yii
1、在SiteController中添加如下代码:
/**
* Declares class-based actions.
*/
public function actions() {
return array(
// captcha action renders the CAPTCHA image displ
- Lucene使用说明
dyy_gusi
Lucenesearch分词器
Lucene使用说明
1、lucene简介
1.1、什么是lucene
Lucene是一个全文搜索框架,而不是应用产品。因此它并不像baidu或者googleDesktop那种拿来就能用,它只是提供了一种工具让你能实现这些产品和功能。
1.2、lucene能做什么
要回答这个问题,先要了解lucene的本质。实际
- 学习编程并不难,做到以下几点即可!
gcq511120594
数据结构编程算法
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- Java面试十问之三:Java与C++内存回收机制的差别
HNUlanwei
javaC++finalize()堆栈内存回收
大家知道, Java 除了那 8 种基本类型以外,其他都是对象类型(又称为引用类型)的数据。 JVM 会把程序创建的对象存放在堆空间中,那什么又是堆空间呢?其实,堆( Heap)是一个运行时的数据存储区,从它可以分配大小各异的空间。一般,运行时的数据存储区有堆( Heap)和堆栈( Stack),所以要先看它们里面可以分配哪些类型的对象实体,然后才知道如何均衡使用这两种存储区。一般来说,栈中存放的
- 第二章 Nginx+Lua开发入门
jinnianshilongnian
nginxlua
Nginx入门
本文目的是学习Nginx+Lua开发,对于Nginx基本知识可以参考如下文章:
nginx启动、关闭、重启
http://www.cnblogs.com/derekchen/archive/2011/02/17/1957209.html
agentzh 的 Nginx 教程
http://openresty.org/download/agentzh-nginx-tutor
- MongoDB windows安装 基本命令
liyonghui160com
windows安装
安装目录:
D:\MongoDB\
新建目录
D:\MongoDB\data\db
4.启动进城:
cd D:\MongoDB\bin
mongod -dbpath D:\MongoDB\data\db
&n
- Linux下通过源码编译安装程序
pda158
linux
一、程序的组成部分 Linux下程序大都是由以下几部分组成: 二进制文件:也就是可以运行的程序文件 库文件:就是通常我们见到的lib目录下的文件 配置文件:这个不必多说,都知道 帮助文档:通常是我们在linux下用man命令查看的命令的文档
二、linux下程序的存放目录 linux程序的存放目录大致有三个地方: /etc, /b
- WEB开发编程的职业生涯4个阶段
shw3588
编程Web工作生活
觉得自己什么都会
2007年从学校毕业,凭借自己原创的ASP毕业设计,以为自己很厉害似的,信心满满去东莞找工作,找面试成功率确实很高,只是工资不高,但依旧无法磨灭那过分的自信,那时候什么考勤系统、什么OA系统、什么ERP,什么都觉得有信心,这样的生涯大概持续了约一年。
根本不是自己想的那样
2008年开始接触很多工作相关的东西,发现太多东西自己根本不会,都需要去学,不管是asp还是js,
- 遭遇jsonp同域下变作post请求的坑
vb2005xu
jsonp同域post
今天迁移一个站点时遇到一个坑爹问题,同一个jsonp接口在跨域时都能调用成功,但是在同域下调用虽然成功,但是数据却有问题. 此处贴出我的后端代码片段
$mi_id = htmlspecialchars(trim($_GET['mi_id ']));
$mi_cv = htmlspecialchars(trim($_GET['mi_cv ']));
贴出我前端代码片段:
$.aj