将labelme生成的json文件转换成png图

将labelme生成的json文件转换成png图

我图片的每个标记只有一类,所以转换成png图后,png只有0和1像素,因为单通道图的范围是0~255,0和1的区别很小,下面的程序可以对你标记的mask做可视化,但是生成的png还是像素值为0和1的,如果自己有需要可以改像素值。

首先要把所有你需要转换的json文件放在一个文件夹里,然后把这个文件夹的路径填入到下面的json_file就可以了。程序运行完会在文件下生成两个文件夹:mask和mask_viz

将labelme生成的json文件转换成png图_第1张图片

mask中有png图,和两个标签文件

将labelme生成的json文件转换成png图_第2张图片

mask_viz中是可视化的mask图

将labelme生成的json文件转换成png图_第3张图片

程序:

#!/usr/bin/python
# -*- coding: UTF-8 -*-
# !H:\Anaconda3\envs\new_labelme\python.exe
import argparse
import json
import os
import os.path as osp
import base64
import warnings

import PIL.Image
import yaml

from labelme import utils

import cv2
import numpy as np
from skimage import img_as_ubyte


# from sys import argv

def main():
    warnings.warn("This script is aimed to demonstrate how to convert the\n"
                  "JSON file to a single image dataset, and not to handle\n"
                  "multiple JSON files to generate a real-use dataset.")

    json_file = "/home/jfw/needlabel/6_json/"

    # freedom
    list_path = os.listdir(json_file)
    print('freedom =', json_file)
    for i in range(0, len(list_path)):
        path = os.path.join(json_file, list_path[i])
        if os.path.isfile(path):

            data = json.load(open(path))
            img = utils.img_b64_to_arr(data['imageData'])
            lbl, lbl_names = utils.labelme_shapes_to_label(img.shape, data['shapes'])

            captions = ['%d: %s' % (l, name) for l, name in enumerate(lbl_names)]

            lbl_viz = utils.draw_label(lbl, img, captions)
            # out_dir = osp.basename(path).replace('.', '_')
            out_dir = osp.basename(path).split('.json')[0]
            save_file_name = out_dir
            # out_dir = osp.join(osp.dirname(path), out_dir)

            if not osp.exists(json_file + 'mask'):
                os.mkdir(json_file + 'mask')
            maskdir = json_file + 'mask'

            if not osp.exists(json_file + 'mask_viz'):
                os.mkdir(json_file + 'mask_viz')
            maskvizdir = json_file + 'mask_viz'

            out_dir1 = maskdir
            # if not osp.exists(out_dir1):
            #     os.mkdir(out_dir1)

            # PIL.Image.fromarray(img).save(out_dir1 + '\\' + save_file_name + '_img.png')
            PIL.Image.fromarray(lbl).save(out_dir1 +'/'+ save_file_name + '.png')

            PIL.Image.fromarray(lbl_viz).save(maskvizdir + '/' + save_file_name +
                                              '_label_viz.png')

            # if not osp.exists(json_file + '\\' + 'mask_png'):
            #     os.mkdir(json_file + '\\' + 'mask_png')
            # mask_save2png_path = json_file + '\\' + 'mask_png'
            ################################
            # mask_pic = cv2.imread(out_dir1+'\\'+save_file_name+'_label.png',)
            # print('pic1_deep:',mask_pic.dtype)

            # mask_dst = img_as_ubyte(lbl)  # mask_pic
            # print('pic2_deep:', mask_dst.dtype)
            # cv2.imwrite(mask_save2png_path + '\\' + save_file_name + '_label.png', mask_dst)
            ##################################

            with open(osp.join(out_dir1, 'label_names.txt'), 'w') as f:
                for lbl_name in lbl_names:
                    f.write(lbl_name + '\n')

            warnings.warn('info.yaml is being replaced by label_names.txt')
            info = dict(label_names=lbl_names)
            with open(osp.join(out_dir1, 'info.yaml'), 'w') as f:
                yaml.safe_dump(info, f, default_flow_style=False)

            print('Saved to: %s' % out_dir1)


if __name__ == '__main__':
    # base64path = argv[1]
    main()

 

你可能感兴趣的:(python,计算机视觉)