动态规划学习(1)----大致了解动态规划是个什么东西

基本思路

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。

基本结构

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法.

基本结构

(1)确定问题的决策对象。 (2)对决策过程划分阶段。 (3)对各阶段确定状态变量。 (4)根据状态变量确定费用函数和目标函数。 (5)建立各阶段状态变量的转移过程,确定状态转移方程。

举个例子(硬币找零问题)

问题:设有n种硬币,需要用这些硬币凑一个数,求最小硬币数。

分析:显然,决策对象是硬币数,各阶段的硬币数为阶段状态变量。

实现:

typedef struct {
    int nCoin; //使用硬币数量
    //以下两个成员是为了便于构造出求解过程的展示
    int lastSum;//上一个状态
    int addCoin;//从上一个状态达到当前状态所用的硬币种类
} state;

state *sum = malloc(sizeof(state)*(total+1));

//init
for(i=0;i<=total;i++) 
    sum[i].nCoin = INF;
sum[0].nCoin = 0;
sum[0].lastSum = 0;

for(i=1;i<=total;i++)
    for(j=0;j)
        if(i-coin[j]>=0 && sum[i-coin[j]].nCoin+1<sum[i].nCoin)
        {
            sum[i].nCoin = sum[i-coin[j]].nCoin+1;
            sum[i].lastSum = j;
            sum[i].addCoin = coin[j];
        }

    if(sum[total].nCoin == INF) 
    {
        printf("can't make change.\n");
        return 0;
    }
    else
        //output
    ;

文章参考:

https://www.cnblogs.com/wuyuegb2312/p/3281264.html#q1

百度百科

其他博文:

https://www.hawstein.com/posts/dp-novice-to-advanced.html

poj题目:http://www.cnblogs.com/qijinbiao/archive/2011/09/02/2163460.html


你可能感兴趣的:(算法)