【poj 2406】 Power Strings 【KMP 求最小循环节】

Given two strings a and b we define a*b to be their concatenation. For example, if a = “abc” and b = “def” then a*b = “abcdef”. If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = “” (the empty string) and a^(n+1) = a*(a^n).
Input
Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.
Output
For each s you should print the largest n such that s = a^n for some string a.
Sample Input
abcd
aaaa
ababab
.
Sample Output
1
4
3
Hint
This problem has huge input, use scanf instead of cin to avoid time limit exceed.

KMP 感觉next数组才是本体,很重要,一定要理解其含义。
next 数组 : next[i] 表示的是从[0,i-1] 前缀和后缀的最大匹配长度。
本题就是利用这个 next 来求最小循环节。

网上找了个好理解的 证明
例子证明:
设S=q1q2q3q4q5q6q7q8,并设next[8] = 6,此时str = S[len - next[len]] = q1q2,由字符串特征向量next的定义可知,q1q2q3q4q5q6 = q3q4q5q6q7q8,即有q1q2=q3q4,q3q4=q5q6,q5q6=q7q8,即q1q2为循环子串,且易知为最短循环子串。由以上过程可知,若len可以被len - next[len]整除,则S存在循环子串,否则不存在。

代码

#include
#include
using namespace std ;
typedef long long LL ;

const int MAXN = 1000000+10 ;
const int MAXM = 1e5 ;
const int mod  = 1e9+7;

char str[MAXN];
int nexts[MAXN];
int n,m;
void getnexts(){
    int i,j;
    i=j=0;
    nexts[0]=-1;j=-1;
    while(iif(j==-1||str[i]==str[j]) 
            nexts[++i]=++j;
        else j=nexts[j];
    }
}

int main(){
    while(scanf("%s",str)&&str[0]!='.'){
        m=strlen(str);
        getnexts();
        if(m%(m-nexts[m])||!nexts[m]) puts("1");
        else printf("%d\n",m/(m-nexts[m]));
       }
    return  0;
}
}

你可能感兴趣的:(KMP)