模集经典二级运放设计

案例来自于《CMOS_analog Circuit Design》-Allen

一、基本构型

模集经典二级运放设计_第1张图片

希望确定各晶体管的尺寸以达到如下要求:

基本参数 电平参数 频率参数
L = 1 μ m L=1\mu m L=1μm 共模电平 I C M R = − 1   t o   2 V ICMR=-1 ~to~2V ICMR=1 to 2V 相位裕度60°,增益 A v > 5000 A_v>5000 Av>5000
C L = 10 p F C_L=10pF CL=10pF P d i s s ≤ 2 m W P_{diss} \leq 2mW Pdiss2mW 压摆率 S R > 10 V / μ s SR>10V/\mu s SR>10V/μs
V D D = − V S S = 2.5 V V_{DD}=-V_{SS}=2.5V VDD=VSS=2.5V V o u t = ± 2 V V_{out} =\pm 2V Vout=±2V 带宽增益积 G B = 5 M H z GB=5MHz GB=5MHz

另外器件参数 k n ′ = 110 μ A / V 2 , k p ′ = 50 μ A / V 2 , V T = 0.7 ± 0.15 V k_n'=110 \mu A/V^2,k_p'=50 \mu A/V^2,V_T=0.7\pm0.15V kn=110μA/V2,kp=50μA/V2,VT=0.7±0.15V

二、设计过程:

(1) 满足相位裕度条件,确定米勒电容 C c C_c Cc

因为已知负载电容 C L = 10 p F C_L=10pF CL=10pF,考虑到二级运放有一个隐含条件:第二级放大的跨导是第一级的10倍,即 g m 6 = 10   g m 1 g_{m6}=10~g_{m1} gm6=10 gm1,这样考虑零点后,要达到60°的裕度,第二极点要大于单位增益带宽 G B GB GB的2.2倍(不考虑零点是 3 = 1.73 \sqrt{3}=1.73 3 =1.73倍)。根据这个条件可以确定 C c C_c Cc,它太小不能满足裕度要求,太大会衰减过快,不满足带宽要求。
w 2 ≥ 2.2 G B → g m 6 C L ≥ 2.2 g m 1 C c → C c ≥ 0.22 C L = 2.2 p F w_2 \geq 2.2GB \rightarrow \frac{g_{m6}}{C_L}\geq 2.2 \frac{g_{m1}}{C_c}\rightarrow C_c\geq 0.22C_L=2.2pF w22.2GBCLgm62.2Ccgm1Cc0.22CL=2.2pF
不妨取 C c = 3 p F C_c=3pF Cc=3pF

(2)满足压摆率,确定偏置电流 I 5 I_5 I5

S R = I 5 C c → I 5 = S R × C c = 30 μ A SR=\frac{I_5}{C_c}\rightarrow I_5=SR\times C_c=30\mu A SR=CcI5I5=SR×Cc=30μA

(3)满足带宽增益积,确定 g m 1 , g m 6 g_{m1},g_{m6} gm1,gm6

g m 1 = G B × C c = ( 5 × 1 0 6 ) ( 2 π ) ( 3 × 1 0 − 12 ) = 94.25 μ S g m 6 = 10 g m 1 = 942.5 μ S \begin{aligned} g_{m1}&=GB\times C_c =(5\times10^6)(2\pi)(3\times10^{-12})=94.25\mu S\\ g_{m6}&=10 g_{m1}=942.5 \mu S \end{aligned} gm1gm6=GB×Cc=(5×106)(2π)(3×1012)=94.25μS=10gm1=942.5μS

(4) 满足输入共模电平,确定 ( W / L ) 1 , 2 , ( W / L ) 3 , 4 , ( W / L ) 5 (W/L)_{1,2},(W/L)_{3,4},(W/L)_5 (W/L)1,2,(W/L)3,4,(W/L)5

M 1 M_1 M1的跨导可以很容易得到:
( W / L ) 1 , 2 = g m 1 2 2 k n ′ I 1 = ( 94.25 ) 2 2 ∗ 110 ∗ 15 = 2.79 ≈ 3 (W/L)_{1,2}=\frac{g_{m1}^2}{2k_n'I_1}=\frac{(94.25)^2}{2*110*15}=2.79\approx3 (W/L)1,2=2knI1gm12=211015(94.25)2=2.793
输入共模电平最大值为2V,要保证 M 3 M_3 M3管饱和,考虑到PMOS和NMOS阈值电压偏离的最坏情况,当 V T n = 0.55 , V T p = 0.85 V_{T_n}=0.55,V_{T_p}=0.85 VTn=0.55,VTp=0.85时, M 3 M_3 M3的过驱电压最小,需要的宽长比最大,以保证最坏情况下也饱和。
( W / L ) 3 , 4 = 2 ∗ 0.5 I 5 k p ′ ( V D D − V i n m a x + V T n m i n − V T p m a x ) 2 = 30 × 1 0 − 6 50 × 1 0 − 6 ( 2.5 − 2 + 0.55 − 0.85 ) 2 = 15 \begin{aligned} (W/L)_{3,4}&=\frac{2*0.5I_5}{k_p'(V_{DD}-V_{in_{max}}+V_{Tn_{min}}-V_{Tp_{max}})^2}\\ &=\frac{30\times10^{-6}}{50\times 10^{-6}(2.5-2+0.55-0.85)^2}=15 \end{aligned} (W/L)3,4=kp(VDDVinmax+VTnminVTpmax)220.5I5=50×106(2.52+0.550.85)230×106=15
输入共模电平最小为-1V,要保证 M 5 M_5 M5管饱和,考虑到NMOS阈值电压偏离的最坏情况,当 V T n = 0.85 V_{T_n}=0.85 VTn=0.85时, M 5 M_5 M5的过驱电压最小,需要的宽长比最大,以保证最坏情况下也饱和。
V o v 5 m i n = V i n m i n − V s s − V T n m a x − V o v 1 = − 1 − ( − 2.5 ) − 0.85 − 30 × 1 0 − 6 110 × 1 0 − 6 × 3 = 0.35 V ( W / L ) 5 = 2 I 5 k n ′ V o v 5 m i n 2 = 2 ( 30 × 1 0 − 6 ) 110 × 1 0 − 6 ( 0.35 ) 2 = 4.49 ≈ 4.5 \begin{aligned} V_{ov5_{min}}&=V_{in_{min}}-V_{ss}-V_{Tn_{max}}-V_{ov1}\\ &=-1-(-2.5)-0.85-\sqrt{\frac{30\times10^{-6}}{110\times 10^{-6}\times3}}=0.35V\\ (W/L)_{5}&=\frac{2I_5}{k_n'V_{ov5_{min}}^2}=\frac{2(30\times10^{-6})}{110\times10^{-6}(0.35)^2}=4.49\approx4.5 \end{aligned} Vov5min(W/L)5=VinminVssVTnmaxVov1=1(2.5)0.85110×106×330×106 =0.35V=knVov5min22I5=110×106(0.35)22(30×106)=4.494.5

(5)确定 ( W / L ) 6 , I 6 , ( W / L ) 7 (W/L)_6,I_6,(W/L)_7 (W/L)6,I6,(W/L)7

有个很关键的一点,当共模输入时, V g 6 = V d 4 = V d 3 V_{g6}=V_{d4}=V_{d3} Vg6=Vd4=Vd3,也就是三个PMOS管过驱电压一致,容易求出 g m 4 = 2 I 4 k p ′ ( W / L ) 4 = 2 ∗ 15 ∗ 50 ∗ 15 = 150 μ S g_{m4}=\sqrt{2I_4k_p'(W/L)_4}=\sqrt{2*15*50*15}=150\mu S gm4=2I4kp(W/L)4 =2155015 =150μS,结合 g m 6 = 942.5 μ S , ( W / L ) 4 = 15 g_{m6}=942.5\mu S,(W/L)_4=15 gm6=942.5μS,(W/L)4=15,可得:
( W / L ) 6 = ( W / L ) 4 × g m 6 g m 4 ≈ 94 I 6 = I 4 × ( W / L ) 6 ( W / L ) 4 ≈ 95 μ A ( W / L ) 7 = ( W / L ) 5 × I 6 I 5 ≈ 14 \begin{aligned} (W/L)_6&=(W/L)_4\times \frac{g_{m6}}{g_{m4}}\approx94\\ I_6&=I_4\times \frac{(W/L)_6}{(W/L)_4}\approx95\mu A\\ (W/L)_7&=(W/L)_5\times \frac{I_6}{I_5}\approx14 \end{aligned} (W/L)6I6(W/L)7=(W/L)4×gm4gm694=I4×(W/L)4(W/L)695μA=(W/L)5×I5I614

(6)检查输出电压、功耗、增益是否达标

V o v 6 = 2 I 6 / β 6 = 2 ∗ 95 / ( 50 ∗ 94 ) ≈ 0.2 < 0.5 V o v 7 = 2 I 7 / β 7 = 2 ∗ 95 / ( 110 ∗ 14 ) ≈ 0.35 < 0.5 P d i s s = 5 ∗ ( 30 + 95 ) = 0.625 < 2 m W A v = A v 1 ∗ A V 2 = ( g m 1 ∗ r o 1 ) ( g m 6 ∗ r o 6 ) = ( 94.25 15 ∗ ( 0.04 + 0.05 ) ) ( 942.5 95 ∗ ( 0.04 + 0.05 ) ) = 69.8 ∗ 110 = 7678 > 5000 \begin{aligned} V_{ov6}&=\sqrt{2I_6/\beta_6}=\sqrt{2*95/(50*94)}\approx 0.2<0.5\\ V_{ov7}&=\sqrt{2I_7/\beta_7}=\sqrt{2*95/(110*14)}\approx 0.35<0.5\\ P_{diss}&=5*(30+95)=0.625<2mW\\ A_v&=A_{v1}*A_{V2}=(g_{m1}*r_{o1})(g_{m6}*r_{o6})\\ &=(\frac{94.25}{15*(0.04+0.05)})(\frac{942.5}{95*(0.04+0.05)})\\ &=69.8*110=7678>5000 \end{aligned} Vov6Vov7PdissAv=2I6/β6 =295/(5094) 0.2<0.5=2I7/β7 =295/(11014) 0.35<0.5=5(30+95)=0.625<2mW=Av1AV2=(gm1ro1)(gm6ro6)=(15(0.04+0.05)94.25)(95(0.04+0.05)942.5)=69.8110=7678>5000

三、结果及半定量分析

模集经典二级运放设计_第2张图片

输出的波动幅度时4V, M 2 M_2 M2 漏极波动约40mV( A 2 ≈ 100 A_2\approx100 A2100),输入两端相等时 V d 2 = 2.5 − 0.7 − 0.2 = 1.6 V V_{d2}=2.5-0.7-0.2=1.6V Vd2=2.50.70.2=1.6V,线性条件下,输入的最大差模电压约0.6mV( A 1 ≈ 70 A_1\approx70 A170)。

四、Hspice 模拟结果

1、网表

* 二级运放Hspice 网表描述
*晶体管参数
M1 4 2 3 3 MN l=1u w=3u 
M2 5 1 3 3 MN l=1u w=3u 
M3 4 4 8 8 MP l=1u w=15u 
M4 5 4 8 8 MP l=1u w=15u 
M5 3 7 9 9 MN l=1u w=4.5u 
M6 6 5 8 8 MP l=1u w=94u 
M7 6 7 9 9 MN l=1u w=14u 
M8 7 7 9 9 MN l=1u w=4.5u 
Cc 6 5 3p
.model mn nmos level=1 vto=0.7 kp=110u lambda=0.04 
.model mp pmos level=1 vto=-0.7 kp=50u lambda=0.05

*电源、输入及外部负载
Ibias 8 7 30u 
VDD 8 0 2.5
VSS 9 0 -2.5
vin1 2 0 1 ac 1
vin2 1 0 1
CL 6 0 10p

*静态工作点
.op
*零极点
.pz v(6) vin1
*交流分析
.ac dec 10 1 100meg
.print ac v(6) vp(6)
.end

2、静态电压和晶体管参数如图:

模集经典二级运放设计_第3张图片

可以看出,管子都处于饱和状态,计算时忽略了沟道调制效应,实际的漏源电流会更大。因为NMOS的lambda小于PMOS,所以节点6处的电压大于0,为995.5796m。节点4的电压与之前分析一致,为1.6V。

3、零极点

模集经典二级运放设计_第4张图片

红框中是主要的极点和零点,单位是赫兹。单位增益带宽 G B = 5 M H z GB=5MHz GB=5MHz p 2 ≈ 5 ∗ 3 = 15 M H z p_2\approx 5*3=15MHz p253=15MHz,与16.2相近。主极点为 G B / A = 651 H z GB/A=651Hz GB/A=651Hz,与579相近。零点约为GB十倍,也相近。

4、波特图

模集经典二级运放设计_第5张图片

数据点显示单位带宽增益为5MHz,相位裕度为67.5°,还是比较符合预期的。

你可能感兴趣的:(电路模拟)