leetcode 413. Arithmetic Slices

1.题目

A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.
等差数列的定义为:至少三个数字组成,两两相邻的数字之差相同。
等差数列,例如:
1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9
不是等差数列:1, 1, 2, 5, 7

A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.
A slice (P, Q) of array A is called arithmetic if the sequence:
A[P], A[p + 1], …, A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.
The function should return the number of arithmetic slices in the array A.
一个下标从0开始的数组A,长度为N。 一个数组切片(P,Q), 满足0<=P

2.分析

两种方法。
方法1: solution里看到的dp
设dp[i]表示以A[i]为结尾的切片数量,那么dp[i+1]=dp[i]+1
例如 1 1 2 3 4
以3为结尾的切片有 1 2 3
以4位结尾的切片有 1 2 3 4 , 2 3 4 多出来的就是2 3 4,所以dp[i+1]=dp[i]+1
按照这个递推公式依次求解,求和。
方法2:找出每一段等差数列,根据长度求可能的切片个数。
例如: 1 1 2 3 4
1 2 3 4是等差数列,长度为切片的可能有1 2 3、2 3 4,1 2 3 4
长度为x的等差数列切片的数量为 x-2+x-3+x-4…+1=(x-2)(x-1)/2
最后求总和即可。

3.代码

方法1:

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& A) {
        int count = 0;
        int total = 0;
        int j = 2;
        while (j < A.size()) {
            if (A[j-1] - A[j - 2] == A[j] - A[j-1])
                count += 1;
            else
                count = 0;
            total += count;
            ++j;
        }
        return total;
    }
};

方法2

int numberOfArithmeticSlices(vector<int>& A) {
    if (A.size() < 3)
        return 0;
    int* diff = new int[A.size() - 1];
    for (int i = 1; i < A.size(); i++)
        diff[i - 1] = A[i] - A[i - 1];//相邻元素的差
    int total = 0;
    int i = 0;
    while (i < A.size() - 1){
        int j = i;
        while (j < A.size() - 2 && diff[j] == diff[j + 1])
            ++j;
        if (j > i)
            total += (j - i)* (j - i + 1) / 2;
        i = j + 1;
    }
    return total;
}

你可能感兴趣的:(leetcode)