时间限制: 1 Sec 内存限制: 128 MB
提交: 63 解决: 20
[提交] [状态] [命题人:admin]
题目描述
Now, Bob is playing an interesting game in which he is a general of a harmonious army. There are n soldiers in this army. Each soldier should be in one of the two occupations, Mage or Warrior. There are m pairs of soldiers having combination ability. There are three kinds of combination ability. If the two soldiers in a pair are both Warriors, the army power would be increased by a. If the two soldiers in a pair are both Mages, the army power would be increased by c. Otherwise the army power would be increased by b, and b=a/4+c/3, guaranteed that 4|a and 3|c. Your task is to output the maximum power Bob can increase by arranging the soldiers' occupations.
Note that the symbol a|b means that a divides b, e.g. , 3|12 and 8|24.
输入
There are multiple test cases.
Each case starts with a line containing two positive integers n(n≤500) and m(m≤104).
In the following m lines, each line contains five positive integers u,v,a,b,c (1≤u,v≤n,u≠v,1≤a,c≤4×106,b=a/4+c/3), denoting soldiers u and v have combination ability, guaranteed that the pair (u,v) would not appear more than once.
It is guaranteed that the sum of n in all test cases is no larger than 5×103, and the sum of m in all test cases is no larger than 5×104.
输出
For each test case, output one line containing the maximum power Bob can increase by arranging the soldiers' occupations.
复制样例数据
3 2
1 2 8 3 3
2 3 4 3 6
样例输出
12
[提交][状态]
题意:对n个点黑白染色,若都为黑,贡献加a,若都为白,贡献加c,否则加b=a/4+c/3
据说网络流做多了就知道要建图求最小割了
(附官方题解的图)
本题要使权值最大,最小割求最小,那么就求出所有权值之和,通过构图使得减去最小割就是答案
若都为黑,假设都划分到s集合下,那么删去c,d两边,也就是A/4+4*C/3,那么c,d赋值为该值的二倍
若都为白,划分到t集合下,那么删去a,b两边,也就是5*A/4+C/3,a,b也赋值为二倍
若一黑一白,则删去a,e,d或b,e,c,也就是A+C,那e赋值为3*A/4+C/6
代码:
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
const int mod = 998244353;
const int maxn = 2e5 + 100;
const int inf = 0x3f3f3f3f;
struct Dinic {
struct Edge {
int next, to;
ll f;
} e[maxn];
int head[maxn];
ll dep[maxn], tol;
ll ans;
int cur[maxn];
int src, sink, n;
void add(int u, int v, int f) {
tol++;
e[tol].to = v;
e[tol].next = head[u];
e[tol].f = f;
head[u] = tol;
tol++;
e[tol].to = u;
e[tol].next = head[v];
e[tol].f = 0;
head[v] = tol;
}
bool bfs() {
queue q;
for (int i = 0; i <= n; ++i) dep[i] = -1;
q.push(src);
dep[src] = 0;
while (!q.empty()) {
int now = q.front();
q.pop();
for (int i = head[now]; i; i = e[i].next) {
if (dep[e[i].to] == -1 && e[i].f) {
dep[e[i].to] = dep[now] + 1;
if (e[i].to == sink)
return true;
q.push(e[i].to);
}
}
}
return false;
}
ll dfs(int x, ll maxx) {
if (x == sink)
return maxx;
for (int &i = cur[x]; i; i = e[i].next) {
if (dep[e[i].to] == dep[x] + 1 && e[i].f > 0) {
ll flow = dfs(e[i].to, min(maxx, e[i].f));
if (flow) {
e[i].f -= flow;
e[i ^ 1].f += flow;
return flow;
}
}
}
return 0;
}
ll dinic(int s, int t) {
ans = 0;
this->src = s;
this->sink = t;
while (bfs()) {
for (int i = 0; i <= n; ++i)
cur[i] = head[i];
while (ll d = dfs(src, inf))
ans += d;
}
return ans;
}
void init(int n) {
this->n = n;
for (int i = 0; i <= n; ++i) head[i] = 0;
tol = 1;
}
} G;
int main() {
int n, m;
while (~scanf("%d%d", &n, &m)) {
G.init(n + 2);
int u, v, a, b, c;
ll ans = 0;
for (int i = 1; i <= m; i++) {
scanf("%d%d%d%d%d", &u, &v, &a, &b, &c);
ans += (a + b + c) * 2; //扩大二倍,防止除不尽出现小数
G.add(n + 1, u, 5 * a / 4 + c / 3);
G.add(n + 1, v, 5 * a / 4 + c / 3);
G.add(u, n + 2, a / 4 + 4 * c / 3);
G.add(v, n + 2, a / 4 + 4 * c / 3);
G.add(u, v, a / 2 + c / 3);
G.add(v, u, a / 2 + c / 3);
}
ans -= G.dinic(n + 1, n + 2);
printf("%lld\n", ans / 2);
}
return 0;
}