【新手入门】课程9-深度学习进阶CV-目标检测

In[1]

# 查看当前挂载的数据集目录
!cd /home/aistudio/data/data4379 && unzip -o pascalvoc.zip && rm *.jpg

In[2]

!mkdir pretrained-model
!mkdir ssd-model

In[3]

!cp data/data7948/mobilenet_v1_imagenet.zip pretrained-model/
!cd pretrained-model && unzip mobilenet_v1_imagenet.zip
!cd pretrained-model && mv mobilenet_v1_imagenet/* . && rm -r mobilenet_v1_imagenet && rm mobilenet_v1_imagenet.zip

定义训练ssd相关的配置

In[4]

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import uuid
import numpy as np
import time
import six
import math
import paddle
import paddle.fluid as fluid
import logging
import xml.etree.ElementTree
import codecs

from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from PIL import Image, ImageEnhance, ImageDraw

logger = None
train_parameters = {
    "input_size": [3, 300, 300],  # 图片的维度
    "class_dim": -1,              #分类数
    "label_dict": {},             # 存放标签字典
    "image_count": -1,            #训练图片数量
    "log_feed_image": False,
    "pretrained": True,           #是否使用预训练的模型
    "pretrained_model_dir": "./pretrained-model", #预训练的mobilenet模型存放路径
    "save_model_dir": "./ssd-model",                 #训练后的模型保存路径
    "model_prefix": "mobilenet-ssd",                 #模型路径前缀
    "data_dir": "/home/aistudio/data/data4379/pascalvoc",  # 数据集解压后存放的目录
    "mean_rgb": [127.5, 127.5, 127.5],              # 常用图片的三通道均值,通常来说需要先对训练数据做统计,此处仅取中间值
    "file_list": "train.txt",                       # 存放训练集图片和标注文件的对应关系
    "mode": "train",                                #train 或者   test
    "multi_data_reader_count": 1,
    "num_epochs": 1,                                # 训练轮数
    "train_batch_size": 64,                         # 训练集batch_size大小
    "use_gpu": False,                                # 是否使用gpu
    "apply_distort": True,
    "apply_expand": True,
    "apply_corp": True,
    "image_distort_strategy": {                     #图像增强的一堆参数
        "expand_prob": 0.5,
        "expand_max_ratio": 4,
        "hue_prob": 0.5,
        "hue_delta": 18,
        "contrast_prob": 0.5,
        "contrast_delta": 0.5,
        "saturation_prob": 0.5,
        "saturation_delta": 0.5,
        "brightness_prob": 0.5,
        "brightness_delta": 0.125
    },
    "rsm_strategy": {                                #一种自适应学习率的方法
        "learning_rate": 0.001,
        "lr_epochs": [40, 60, 80, 100],
        "lr_decay": [1, 0.5, 0.25, 0.1, 0.01],
    },
    "momentum_strategy": {                         #暂未使用
        "learning_rate": 0.1,
        "decay_steps": 2 ** 7,
        "decay_rate": 0.8
    },
    "early_stop": {
        "sample_frequency": 50,
        "successive_limit": 3,
        "min_loss": 1.28,                         #最小的损失
        "min_curr_map": 0.86                      #最小的mAP值
    }
}

定义基于 mobile-net 的SSD网络结构

mobile-net为移动端和嵌入式端深度学习应用设计的网络,使得在cpu上也能达到理想的速度要求。

标准卷积:特点是卷积核的通道数等于输入特征图的通道数

depthwise卷积:本质就是普通的卷积,只不过采用1*1的卷积核,通道数等于特征图的通道数。

采用depthwise卷积对不同输入通道分别进行卷积,然后用pointwise卷积将上面的输出再进行结合。这样其实整体效果和一个标准卷积是差不多的,但是会大大减少计算量和模型参数量。

In[5]

class MobileNetSSD:
    def __init__(self):
        pass

    def conv_bn(self,
                input,
                filter_size,
                num_filters,
                stride,
                padding,
                num_groups=1,
                act='relu',
                use_cudnn=True):
        parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA())
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=parameter_attr,
            bias_attr=False)
        return fluid.layers.batch_norm(input=conv, act=act)

    def depthwise_separable(self, input, num_filters1, num_filters2, num_groups, stride, scale):
        depthwise_conv = self.conv_bn(
            input=input,
            filter_size=3,
            num_filters=int(num_filters1 * scale),
            stride=stride,
            padding=1,
            num_groups=int(num_groups * scale),
            use_cudnn=False)

        pointwise_conv = self.conv_bn(
            input=depthwise_conv,
            filter_size=1,
            num_filters=int(num_filters2 * scale),
            stride=1,
            padding=0)
        return pointwise_conv

    def extra_block(self, input, num_filters1, num_filters2, num_groups, stride, scale):
        # 1x1 conv
        pointwise_conv = self.conv_bn(
            input=input,
            filter_size=1,
            num_filters=int(num_filters1 * scale),
            stride=1,
            num_groups=int(num_groups * scale),
            padding=0)

        # 3x3 conv
        normal_conv = self.conv_bn(
            input=pointwise_conv,
            filter_size=3,
            num_filters=int(num_filters2 * scale),
            stride=2,
            num_groups=int(num_groups * scale),
            padding=1)
        return normal_conv

    def net(self, num_classes, img, img_shape, scale=1.0):
        # 300x300
        tmp = self.conv_bn(img, 3, int(32 * scale), 2, 1)
        # 150x150
        tmp = self.depthwise_separable(tmp, 32, 64, 32, 1, scale)
        tmp = self.depthwise_separable(tmp, 64, 128, 64, 2, scale)
        # 75x75
        tmp = self.depthwise_separable(tmp, 128, 128, 128, 1, scale)
        tmp = self.depthwise_separable(tmp, 128, 256, 128, 2, scale)
        # 38x38
        tmp = self.depthwise_separable(tmp, 256, 256, 256, 1, scale)
        tmp = self.depthwise_separable(tmp, 256, 512, 256, 2, scale)

        # 19x19
        for i in range(5):
            tmp = self.depthwise_separable(tmp, 512, 512, 512, 1, scale)
        module11 = tmp
        tmp = self.depthwise_separable(tmp, 512, 1024, 512, 2, scale)

        # 10x10
        module13 = self.depthwise_separable(tmp, 1024, 1024, 1024, 1, scale)
        module14 = self.extra_block(module13, 256, 512, 1, 2, scale)
        # 5x5
        module15 = self.extra_block(module14, 128, 256, 1, 2, scale)
        # 3x3
        module16 = self.extra_block(module15, 128, 256, 1, 2, scale)
        # 2x2
        module17 = self.extra_block(module16, 64, 128, 1, 2, scale)
        #生成SSD算法的候选框。从多个特征图中,进行预测分类边界框。
        mbox_locs, mbox_confs, box, box_var = fluid.layers.multi_box_head(
            inputs=[module11, module13, module14, module15, module16, module17],   #输入变量列表
            image=img,                                                             #输入图像数据
            num_classes=num_classes,                                               #类的数量
            min_ratio=20,                                                          #生成候选框的最小比例
            max_ratio=90,                                                          #生成候选框的最大比例
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2., 3.]],#生成候选框的宽高比
            base_size=img_shape[2],                                                #300                    
            offset=0.5,                                                            #候选框中心偏移
            flip=True)                                                             #是否翻转宽高比

        return mbox_locs, mbox_confs, box, box_var   #返回gound_truth的位置(中心点的坐标、长、宽)、预测框对输入的置信度、候选框、方差

定义训练时候,数据增强需要的辅助类,例如外接矩形框、采样器

In[6]

class sampler:
    def __init__(self, max_sample, max_trial, min_scale, max_scale,
                 min_aspect_ratio, max_aspect_ratio, min_jaccard_overlap,
                 max_jaccard_overlap):
        self.max_sample = max_sample
        self.max_trial = max_trial
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.min_aspect_ratio = min_aspect_ratio
        self.max_aspect_ratio = max_aspect_ratio
        self.min_jaccard_overlap = min_jaccard_overlap
        self.max_jaccard_overlap = max_jaccard_overlap


class bbox:
    def __init__(self, xmin, ymin, xmax, ymax):
        self.xmin = xmin
        self.ymin = ymin
        self.xmax = xmax
        self.ymax = ymax

In[7]

# 初始化train_train_parameters中的参数
def init_train_parameters():
    file_list = os.path.join(train_parameters['data_dir'], "train.txt")
    label_list = os.path.join(train_parameters['data_dir'], "label_list")
    index = 0
    with codecs.open(label_list, encoding='utf-8') as flist:
        lines = [line.strip() for line in flist]
        for line in lines:
            train_parameters['label_dict'][line.strip()] = index
            index += 1
        train_parameters['class_dim'] = index
    with codecs.open(file_list, encoding='utf-8') as flist:
        lines = [line.strip() for line in flist]
        train_parameters['image_count'] = len(lines)

#初始化日志记录相关参数
def init_log_config():
    global logger
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    log_path = os.path.join(os.getcwd(), 'logs')
    if not os.path.exists(log_path):
        os.makedirs(log_path)
    log_name = os.path.join(log_path, 'train.log')
    fh = logging.FileHandler(log_name, mode='w')
    fh.setLevel(logging.DEBUG)
    formatter = logging.Formatter("%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s")
    fh.setFormatter(formatter)
    logger.addHandler(fh)

In[8]

#为了更直观的看到训练样本的形态,增加打印图片,并画出bbox的函数
def log_feed_image(img, sampled_labels):
    draw = ImageDraw.Draw(img)
    target_h = train_parameters['input_size'][1]
    target_w = train_parameters['input_size'][2]
    for label in sampled_labels:
        print(label)
        draw.rectangle((label[1] * target_w, label[2] * target_h, label[3] * target_w, label[4] * target_h), None,
                       'red')
    img.save(str(uuid.uuid1()) + '.jpg')

训练数据增强,主要是采样。利用随机截取训练图上的框来生成新的训练样本。同时要保证采样的样本能包含真实的目标。采样之后,为了保持训练数据格式的一致性,还需要对标注的坐标信息做变换

In[9]

def bbox_area(src_bbox):
    width = src_bbox.xmax - src_bbox.xmin
    height = src_bbox.ymax - src_bbox.ymin
    return width * height


def generate_sample(sampler):
    scale = np.random.uniform(sampler.min_scale, sampler.max_scale)
    aspect_ratio = np.random.uniform(sampler.min_aspect_ratio, sampler.max_aspect_ratio)
    aspect_ratio = max(aspect_ratio, (scale ** 2.0))
    aspect_ratio = min(aspect_ratio, 1 / (scale ** 2.0))

    bbox_width = scale * (aspect_ratio ** 0.5)
    bbox_height = scale / (aspect_ratio ** 0.5)
    xmin_bound = 1 - bbox_width
    ymin_bound = 1 - bbox_height
    xmin = np.random.uniform(0, xmin_bound)
    ymin = np.random.uniform(0, ymin_bound)
    xmax = xmin + bbox_width
    ymax = ymin + bbox_height
    sampled_bbox = bbox(xmin, ymin, xmax, ymax)
    return sampled_bbox


def jaccard_overlap(sample_bbox, object_bbox):
    if sample_bbox.xmin >= object_bbox.xmax or \
                    sample_bbox.xmax <= object_bbox.xmin or \
                    sample_bbox.ymin >= object_bbox.ymax or \
                    sample_bbox.ymax <= object_bbox.ymin:
        return 0
    intersect_xmin = max(sample_bbox.xmin, object_bbox.xmin)
    intersect_ymin = max(sample_bbox.ymin, object_bbox.ymin)
    intersect_xmax = min(sample_bbox.xmax, object_bbox.xmax)
    intersect_ymax = min(sample_bbox.ymax, object_bbox.ymax)
    intersect_size = (intersect_xmax - intersect_xmin) * (intersect_ymax - intersect_ymin)
    sample_bbox_size = bbox_area(sample_bbox)
    object_bbox_size = bbox_area(object_bbox)
    overlap = intersect_size / (sample_bbox_size + object_bbox_size - intersect_size)
    return overlap


def satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
    if sampler.min_jaccard_overlap == 0 and sampler.max_jaccard_overlap == 0:
        return True
    for i in range(len(bbox_labels)):
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2], bbox_labels[i][3], bbox_labels[i][4])
        overlap = jaccard_overlap(sample_bbox, object_bbox)
        if sampler.min_jaccard_overlap != 0 and overlap < sampler.min_jaccard_overlap:
            continue
        if sampler.max_jaccard_overlap != 0 and overlap > sampler.max_jaccard_overlap:
            continue
        return True
    return False


def generate_batch_samples(batch_sampler, bbox_labels):
    sampled_bbox = []
    index = []
    c = 0
    for sampler in batch_sampler:
        found = 0
        for i in range(sampler.max_trial):
            if found >= sampler.max_sample:
                break
            sample_bbox = generate_sample(sampler)
            if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
                sampled_bbox.append(sample_bbox)
                found = found + 1
                index.append(c)
        c = c + 1
    return sampled_bbox


def clip_bbox(src_bbox):
    src_bbox.xmin = max(min(src_bbox.xmin, 1.0), 0.0)
    src_bbox.ymin = max(min(src_bbox.ymin, 1.0), 0.0)
    src_bbox.xmax = max(min(src_bbox.xmax, 1.0), 0.0)
    src_bbox.ymax = max(min(src_bbox.ymax, 1.0), 0.0)
    return src_bbox


def meet_emit_constraint(src_bbox, sample_bbox):
    center_x = (src_bbox.xmax + src_bbox.xmin) / 2
    center_y = (src_bbox.ymax + src_bbox.ymin) / 2
    if center_x >= sample_bbox.xmin and \
                    center_x <= sample_bbox.xmax and \
                    center_y >= sample_bbox.ymin and \
                    center_y <= sample_bbox.ymax:
        return True
    return False


def transform_labels(bbox_labels, sample_bbox):
    proj_bbox = bbox(0, 0, 0, 0)
    sample_labels = []
    for i in range(len(bbox_labels)):
        sample_label = []
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2], bbox_labels[i][3], bbox_labels[i][4])
        if not meet_emit_constraint(object_bbox, sample_bbox):
            continue
        sample_width = sample_bbox.xmax - sample_bbox.xmin
        sample_height = sample_bbox.ymax - sample_bbox.ymin
        proj_bbox.xmin = (object_bbox.xmin - sample_bbox.xmin) / sample_width
        proj_bbox.ymin = (object_bbox.ymin - sample_bbox.ymin) / sample_height
        proj_bbox.xmax = (object_bbox.xmax - sample_bbox.xmin) / sample_width
        proj_bbox.ymax = (object_bbox.ymax - sample_bbox.ymin) / sample_height
        proj_bbox = clip_bbox(proj_bbox)
        if bbox_area(proj_bbox) > 0:
            sample_label.append(bbox_labels[i][0])
            sample_label.append(float(proj_bbox.xmin))
            sample_label.append(float(proj_bbox.ymin))
            sample_label.append(float(proj_bbox.xmax))
            sample_label.append(float(proj_bbox.ymax))
            sample_label.append(bbox_labels[i][5])
            sample_labels.append(sample_label)
    return sample_labels



#裁剪图片
def crop_image(img, bbox_labels, sample_bbox, image_width, image_height):
    sample_bbox = clip_bbox(sample_bbox)
    xmin = int(sample_bbox.xmin * image_width)
    xmax = int(sample_bbox.xmax * image_width)
    ymin = int(sample_bbox.ymin * image_height)
    ymax = int(sample_bbox.ymax * image_height)
    sample_img = img.crop((xmin, ymin, xmax, ymax))
    sample_labels = transform_labels(bbox_labels, sample_bbox)
    return sample_img, sample_labels

图像增强相关的函数:

  • 对比度
  • 饱和度
  • 色彩明暗
  • 保持长宽比例的缩放

In[10]

#调整图片大小
def resize_img(img, sampled_labels):
    target_size = train_parameters['input_size']
    ret = img.resize((target_size[1], target_size[2]), Image.ANTIALIAS)
    return ret

#图像增强,亮度调整
def random_brightness(img):
    prob = np.random.uniform(0, 1)
    if prob < train_parameters['image_distort_strategy']['brightness_prob']:
        brightness_delta = train_parameters['image_distort_strategy']['brightness_delta']
        delta = np.random.uniform(-brightness_delta, brightness_delta) + 1
        img = ImageEnhance.Brightness(img).enhance(delta)
    return img

#图像增强,对比度调整
def random_contrast(img):
    prob = np.random.uniform(0, 1)
    if prob < train_parameters['image_distort_strategy']['contrast_prob']:
        contrast_delta = train_parameters['image_distort_strategy']['contrast_delta']
        delta = np.random.uniform(-contrast_delta, contrast_delta) + 1
        img = ImageEnhance.Contrast(img).enhance(delta)
    return img


#图像增强,饱和度调整
def random_saturation(img):
    prob = np.random.uniform(0, 1)
    if prob < train_parameters['image_distort_strategy']['saturation_prob']:
        saturation_delta = train_parameters['image_distort_strategy']['saturation_delta']
        delta = np.random.uniform(-saturation_delta, saturation_delta) + 1
        img = ImageEnhance.Color(img).enhance(delta)
    return img

#图像增强,色度调整
def random_hue(img):
    prob = np.random.uniform(0, 1)
    if prob < train_parameters['image_distort_strategy']['hue_prob']:
        hue_delta = train_parameters['image_distort_strategy']['hue_delta']
        delta = np.random.uniform(-hue_delta, hue_delta)
        img_hsv = np.array(img.convert('HSV'))
        img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta
        img = Image.fromarray(img_hsv, mode='HSV').convert('RGB')
    return img

#概率的图像增强
def distort_image(img):
    prob = np.random.uniform(0, 1)
    # Apply different distort order
    if prob > 0.5:
        img = random_brightness(img)
        img = random_contrast(img)
        img = random_saturation(img)
        img = random_hue(img)
    else:
        img = random_brightness(img)
        img = random_saturation(img)
        img = random_hue(img)
        img = random_contrast(img)
    return img


def expand_image(img, bbox_labels, img_width, img_height):
    prob = np.random.uniform(0, 1)
    if prob < train_parameters['image_distort_strategy']['expand_prob']:
        expand_max_ratio = train_parameters['image_distort_strategy']['expand_max_ratio']
        if expand_max_ratio - 1 >= 0.01:
            expand_ratio = np.random.uniform(1, expand_max_ratio)
            height = int(img_height * expand_ratio)
            width = int(img_width * expand_ratio)
            h_off = math.floor(np.random.uniform(0, height - img_height))
            w_off = math.floor(np.random.uniform(0, width - img_width))
            expand_bbox = bbox(-w_off / img_width, -h_off / img_height,
                               (width - w_off) / img_width,
                               (height - h_off) / img_height)
            expand_img = np.uint8(np.ones((height, width, 3)) * np.array([127.5, 127.5, 127.5]))
            expand_img = Image.fromarray(expand_img)
            expand_img.paste(img, (int(w_off), int(h_off)))
            bbox_labels = transform_labels(bbox_labels, expand_bbox)
            return expand_img, bbox_labels, width, height
    return img, bbox_labels, img_width, img_height


def preprocess(img, bbox_labels, mode):
    img_width, img_height = img.size
    sampled_labels = bbox_labels
    if mode == 'train':
        if train_parameters['apply_distort']:
            img = distort_image(img)
        if train_parameters['apply_expand']:
            img, bbox_labels, img_width, img_height = expand_image(img, bbox_labels, img_width, img_height)

        if train_parameters['apply_corp']:
            batch_sampler = []
            # hard-code here
            batch_sampler.append(sampler(1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0))
            batch_sampler.append(sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0))
            sampled_bbox = generate_batch_samples(batch_sampler, bbox_labels)
            if len(sampled_bbox) > 0:
                idx = int(np.random.uniform(0, len(sampled_bbox)))
                img, sampled_labels = crop_image(img, bbox_labels, sampled_bbox[idx], img_width, img_height)

        mirror = int(np.random.uniform(0, 2))
        if mirror == 1:
            img = img.transpose(Image.FLIP_LEFT_RIGHT)
            for i in six.moves.xrange(len(sampled_labels)):
                tmp = sampled_labels[i][1]
                sampled_labels[i][1] = 1 - sampled_labels[i][3]
                sampled_labels[i][3] = 1 - tmp

    img = resize_img(img, sampled_labels)
    if train_parameters['log_feed_image']:
        log_feed_image(img, sampled_labels)
    img = np.array(img).astype('float32')
    img -= train_parameters['mean_rgb']
    img = img.transpose((2, 0, 1))  # HWC to CHW
    img *= 0.007843
    return img, sampled_labels

自定义用户数据读取器。因为图像处理比较多,批处理时会很慢,可能导致数据处理时间比真实计算模型的时间还要长!为了尽量避免这种情况,训练时使用并行化的数据读取器。

同时,为了方便训练中能够验证当前的效果,中间验证的时候使用同步数据读取器

原本验证的数据不应该和训练数据混着用,此处仅仅为了示例,真实训练,建议将两批数据分开

In[11]

def custom_reader(file_list, data_dir, mode):
    def reader():
        np.random.shuffle(file_list)
        for line in file_list:
            if mode == 'train' or mode == 'eval':
                image_path, label_path = line.split()
                image_path = os.path.join(data_dir, image_path)
                label_path = os.path.join(data_dir, label_path)
                img = Image.open(image_path)
                if img.mode != 'RGB':
                    img = img.convert('RGB')
                im_width, im_height = img.size
                # layout: label | xmin | ymin | xmax | ymax | difficult
                bbox_labels = []
                root = xml.etree.ElementTree.parse(label_path).getroot()
                for object in root.findall('object'):
                    bbox_sample = []
                    bbox_sample.append(float(train_parameters['label_dict'][object.find('name').text]))
                    bbox = object.find('bndbox')
                    difficult = float(object.find('difficult').text)
                    bbox_sample.append(float(bbox.find('xmin').text) / im_width)
                    bbox_sample.append(float(bbox.find('ymin').text) / im_height)
                    bbox_sample.append(float(bbox.find('xmax').text) / im_width)
                    bbox_sample.append(float(bbox.find('ymax').text) / im_height)
                    bbox_sample.append(difficult)
                    bbox_labels.append(bbox_sample)
                img, sample_labels = preprocess(img, bbox_labels, mode)
                sample_labels = np.array(sample_labels)
                if len(sample_labels) == 0: continue
                boxes = sample_labels[:, 1:5]
                lbls = sample_labels[:, 0].astype('int32')
                difficults = sample_labels[:, -1].astype('int32')
                yield img, boxes, lbls, difficults
            elif mode == 'test':
                img_path = os.path.join(data_dir, line)
                yield Image.open(img_path)

    return reader

#多进程reader使用python多进程从reader中读取数据
def multi_process_custom_reader(file_path, data_dir, num_workers, mode):
    file_path = os.path.join(data_dir, file_path)
    readers = []
    images = [line.strip() for line in open(file_path)]
    n = int(math.ceil(len(images) // num_workers))
    image_lists = [images[i: i + n] for i in range(0, len(images), n)]
    for l in image_lists:
        readers.append(paddle.batch(custom_reader(l, data_dir, mode),
                                          batch_size=train_parameters['train_batch_size'],
                                          drop_last=True))
    return paddle.reader.multiprocess_reader(readers, False)


def create_eval_reader(file_path, data_dir, mode):
    file_path = os.path.join(data_dir, file_path)
    images = [line.strip() for line in open(file_path)]
    return paddle.batch(custom_reader(images, data_dir, mode),
                                    batch_size=train_parameters['train_batch_size'],
                                    drop_last=True)

配合两种不同数据读取器,定义两种网络构建方法。注意两种定义的时候要共享参数,同时验证网络需要设置为 for_test

In[12]

def build_train_program_with_async_reader(main_prog, startup_prog):
    with fluid.program_guard(main_prog, startup_prog):
        
        img = fluid.layers.data(name='img', shape=train_parameters['input_size'], dtype='float32')
        gt_box = fluid.layers.data(name='gt_box', shape=[4], dtype='float32', lod_level=1)
        gt_label = fluid.layers.data(name='gt_label', shape=[1], dtype='int32', lod_level=1)
        difficult = fluid.layers.data(name='difficult', shape=[1], dtype='int32', lod_level=1)
        #创建一个 Python reader用于在python中提供数据,该函数将返回一个 reader 变量。
        data_reader = fluid.layers.create_py_reader_by_data(capacity=64,                                   #缓冲区容量
                                                            feed_list=[img, gt_box, gt_label, difficult],  #传输数据列表
                                                            name='train')                                  #reader名称
        #多进程reader,使用python多进程从reader中读取数据
        multi_reader = multi_process_custom_reader(train_parameters['file_list'],
                                                   train_parameters['data_dir'],
                                                   train_parameters['multi_data_reader_count'],
                                                   'train')
        #将输入数据转换成reader返回的多个mini-batches。每个mini-batch分别送入各设备中。
        data_reader.decorate_paddle_reader(multi_reader)
        with fluid.unique_name.guard():
            img, gt_box, gt_label, difficult = fluid.layers.read_file(data_reader)
            model = MobileNetSSD()
            locs, confs, box, box_var = model.net(train_parameters['class_dim'], img, train_parameters['input_size'])
            with fluid.unique_name.guard('train'):
                '''
                locs:预测得到的候选框的位置(中心点的坐标、长、宽)
                confs:每个类别的置信度
                gt_box:groud_truth的位置
                gt_label:ground_tru
                box:候选框的位置
                box_var:方差
                '''
                #paddlepaddle提供了ssd_loss(),返回ssd算法中回归损失和分类损失的加权和
                loss = fluid.layers.ssd_loss(locs, confs, gt_box, gt_label, box, box_var)
                loss = fluid.layers.reduce_sum(loss)
                optimizer = optimizer_rms_setting()
                optimizer.minimize(loss)
                return data_reader, img, loss, locs, confs, box, box_var


def build_eval_program_with_feeder(main_prog, startup_prog):
    with fluid.program_guard(main_prog, startup_prog):
        img = fluid.layers.data(name='img', shape=train_parameters['input_size'], dtype='float32')
        gt_box = fluid.layers.data(name='gt_box', shape=[4], dtype='float32', lod_level=1)
        gt_label = fluid.layers.data(name='gt_label', shape=[1], dtype='int32', lod_level=1)
        difficult = fluid.layers.data(name='difficult', shape=[1], dtype='int32', lod_level=1)
        feeder = fluid.DataFeeder(feed_list=[img, gt_box, gt_label, difficult], place=place, program=main_prog)
        reader = create_eval_reader(train_parameters['file_list'], train_parameters['data_dir'], 'eval')
        with fluid.unique_name.guard():
            model = MobileNetSSD()
            locs, confs, box, box_var = model.net(train_parameters['class_dim'], img, train_parameters['input_size'])
            with fluid.unique_name.guard('eval'):
                nmsed_out = fluid.layers.detection_output(locs, confs, box, box_var, nms_threshold=0.45)   #非极大值抑制得到的结果
                map_eval = fluid.metrics.DetectionMAP(nmsed_out, gt_label, gt_box, difficult,              #计算map
                                                      train_parameters['class_dim'], overlap_threshold=0.5,
                                                      evaluate_difficult=False, ap_version='11point')
                '''
                “cur_map” 是当前 mini-batch 的 mAP
                "accum_map"是一个pass的mAP的累加和  
                '''
                cur_map, accum_map = map_eval.get_map_var()
                return feeder, reader, cur_map, accum_map, nmsed_out

定义优化器。对于训练这种比较大的网络结构,尽量使用阶段性调整学习率的方式

In[13]

def optimizer_momentum_setting():
    learning_strategy = train_parameters['momentum_strategy']
    learning_rate = fluid.layers.exponential_decay(learning_rate=learning_strategy['learning_rate'],
                                                   decay_steps=learning_strategy['decay_steps'],
                                                   decay_rate=learning_strategy['decay_rate'])
    optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=learning_rate, momentum=0.1)
    return optimizer

#一种自适应的学习率
def optimizer_rms_setting():
    batch_size = train_parameters["train_batch_size"]
    iters = train_parameters["image_count"] // batch_size
    learning_strategy = train_parameters['rsm_strategy']
    lr = learning_strategy['learning_rate']

    boundaries = [i * iters for i in learning_strategy["lr_epochs"]]
    values = [i * lr for i in learning_strategy["lr_decay"]]

    optimizer = fluid.optimizer.RMSProp(
        learning_rate=fluid.layers.piecewise_decay(boundaries, values),
        regularization=fluid.regularizer.L2Decay(0.00005))

    return optimizer

保存和加载模型。保存时候注意先保存读写参数,可重训练的方式;后保存固化参数,可用于重训练的方式。

加载模型有两种,一种是用之前训练的参数,接着全网络继续训练;一种是加载预训练的 mobile-net

In[14]

def save_model(base_dir, base_name, feed_var_list, target_var_list, train_program, infer_program, exe):
    fluid.io.save_persistables(dirname=base_dir,
                               filename=base_name + '-retrain',
                               main_program=train_program,
                               executor=exe)
    fluid.io.save_inference_model(dirname=base_dir,
                                  params_filename=base_name + '-params',
                                  model_filename=base_name + '-model',
                                  feeded_var_names=feed_var_list,
                                  target_vars=target_var_list,
                                  main_program=infer_program,
                                  executor=exe)


def load_pretrained_params(exe, program):
    retrain_param_file = os.path.join(train_parameters['save_model_dir'],
                                      train_parameters['model_prefix'] + '-retrain')
    if os.path.exists(retrain_param_file) and train_parameters['continue_train']:
        logger.info('load param from retrain model')
        print('load param from retrain model')
        fluid.io.load_persistables(executor=exe,
                                   dirname=train_parameters['save_model_dir'],
                                   main_program=program,
                                   filename=train_parameters['model_prefix'] + '-retrain')
    elif train_parameters['pretrained'] and os.path.exists(train_parameters['pretrained_model_dir']):
        logger.info('load param from pretrained model')
        print('load param from pretrained model')

        def if_exist(var):
            return os.path.exists(os.path.join(train_parameters['pretrained_model_dir'], var.name))
        fluid.io.load_vars(exe, train_parameters['pretrained_model_dir'], main_program=program,
                           predicate=if_exist)

目标检测是计算机视觉领域的基本且重要的问题之一。

目标检测(generic object detection)的目标是根据大量预定义的类别在自然图像中确定目标实例的位置与类别。

训练主体,配合了一些提前停止策略。

In[ ]

# 初始化日志参数。定义全局变量logger,设置了日志文件存放的目录,日志级别等信息。
init_log_config()

# 初始化train_train_parameters中的参数。class_dim等。
init_train_parameters()
print("start ssd, train params:", str(train_parameters))
logger.info("start ssd, train params: %s", str(train_parameters))

#定义设备训练场所
logger.info("create place, use gpu:" + str(train_parameters['use_gpu']))
place = fluid.CUDAPlace(0) if train_parameters['use_gpu'] else fluid.CPUPlace()

#定义了program
logger.info("build network and program")
train_program = fluid.Program()
start_program = fluid.Program()
eval_program = fluid.Program()

#构造训练用的program
train_reader, img, loss, locs, confs, box, box_var = build_train_program_with_async_reader(train_program, start_program)
#构造验证用的program
eval_feeder, eval_reader, cur_map, accum_map, nmsed_out = build_eval_program_with_feeder(eval_program, start_program)
eval_program = eval_program.clone(for_test=True)    

logger.info("build executor and init params")
#创建Executor
exe = fluid.Executor(place)
exe.run(start_program)

#定义训练、预测的输出值
train_fetch_list = [loss.name]
eval_fetch_list = [cur_map.name, accum_map.name]

# 加载mobilenet预训练的参数到train_program中
load_pretrained_params(exe, train_program)

#获取early_stop参数
stop_strategy = train_parameters['early_stop']
successive_limit = stop_strategy['successive_limit']
sample_freq = stop_strategy['sample_frequency']
min_curr_map = stop_strategy['min_curr_map']
min_loss = stop_strategy['min_loss']
stop_train = False
total_batch_count = 0
successive_count = 0
for pass_id in range(train_parameters["num_epochs"]):
    logger.info("current pass: %d, start read image", pass_id)
    batch_id = 0
    train_reader.start()
    try:
        while True:
            t1 = time.time()
            loss = exe.run(train_program, fetch_list=train_fetch_list)         
            period = time.time() - t1
            loss = np.mean(np.array(loss))
            batch_id += 1
            total_batch_count += 1

            if batch_id % 10 == 0:                 #每10个批次打印一次损失
                logger.info(
                    "Pass {0}, trainbatch {1}, loss {2} time {3}".format(pass_id, batch_id, loss, "%2.2f sec" % period))
                print(
                    "Pass {0}, trainbatch {1}, loss {2} time {3}".format(pass_id, batch_id, loss, "%2.2f sec" % period))

            if total_batch_count % 400 == 0:      #每训练400批次的数据,保存一次模型
                logger.info("temp save {0} batch train result".format(total_batch_count))
                print("temp save {0} batch train result".format(total_batch_count))
                fluid.io.save_persistables(dirname=train_parameters['save_model_dir'],            ##从program中取出变量,将其存入指定目录中
                                           filename=train_parameters['model_prefix'] + '-retrain',
                                           main_program=train_program,
                                           executor=exe)

            if total_batch_count == 1 or total_batch_count % sample_freq == 0: #满足一定条件,进行一次验证
                for data in eval_reader():
                    cur_map_v, accum_map_v = exe.run(eval_program, feed=eval_feeder.feed(data), fetch_list=eval_fetch_list)
                    break
                logger.info("{0} batch train, cur_map:{1} accum_map_v:{2} loss:{3}".format(total_batch_count, cur_map_v[0],
                                                                                  accum_map_v[0], loss))
                print("{0} batch train, cur_map:{1} accum_map_v:{2} loss:{3}".format(total_batch_count, cur_map_v[0],
                                                                            accum_map_v[0], loss))
                #在验证过程中,map大于所设置的最小的map,或损失小于所设置的最小的损失,认为目标识别正确,successive_count加1
                if cur_map_v[0] > min_curr_map or loss <= min_loss:
                    successive_count += 1
                    print("successive_count: ", successive_count)
                    fluid.io.save_inference_model(dirname=train_parameters['save_model_dir'],
                                                  params_filename=train_parameters['model_prefix'] + '-params',
                                                  model_filename=train_parameters['model_prefix'] + '-model',
                                                  feeded_var_names=['img'],
                                                  target_vars=[nmsed_out],
                                                  main_program=eval_program,
                                                  executor=exe)
                    #三次达到验证效果,则停止训练
                    if successive_count >= successive_limit:
                        logger.info("early stop, end training")
                        print("early stop, end training")
                        stop_train = True
                        break
                else:
                    successive_count = 0
        if stop_train:
            break
    except fluid.core.EOFException:
        train_reader.reset()

logger.info("training till last epcho, end training")
print("training till last epcho, end training")
save_model(train_parameters['save_model_dir'], train_parameters['model_prefix'] + '-final',
           ['img'], [nmsed_out], train_program, eval_program, exe)

使用训练好的模型开始预测。

1.加载模型

2.预测图片resize

3.非极大值抑制(NMS是目标检测的后处理模块,主要用于删除高度冗余的bouding_box)

4.绘制矩形框

In[ ]

# -*- coding: UTF-8 -*-
"""
使用训练完成的模型进行预测
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import sys
import time
import paddle.fluid as fluid

from PIL import Image

from PIL import ImageDraw

target_size = [3, 300, 300]
nms_threshold = 0.45              #非极大值抑制:NMS是目标检测的后处理模块,主要用于删除高度冗余的bouding_box
confs_threshold = 0.5

#创建预测用的exe
place = fluid.CPUPlace()
exe = fluid.Executor(place)
path = "./ssd-model"

#从指定路径加载模型
[inference_program, feed_target_names, fetch_targets] = \
    fluid.io.load_inference_model(dirname=path,
                                  params_filename='mobilenet-ssd-final-params',
                                  model_filename='mobilenet-ssd-final-model',
                                  executor=exe)
print(fetch_targets)


def draw_bbox_image(img, nms_out, save_name):
    """
    给图片画上外接矩形框
    :param img:
    :param nms_out:
    :param save_name:
    :return:
    """
    img_width, img_height = img.size
    draw = ImageDraw.Draw(img)
    for dt in nms_out:
        if dt[1] < confs_threshold:
            continue
        category_id = dt[0]
        bbox = dt[2:]
        #根据网络输出,获取矩形框的左上角、右下角坐标相对位置
        xmin, ymin, xmax, ymax = clip_bbox(dt[2:])
        draw.rectangle((xmin * img_width, ymin * img_height, xmax * img_width, ymax * img_height), None, 'red')
    img.save(save_name)


def clip_bbox(bbox):
    """
    截断矩形框
    :param bbox:
    :return:
    """
    xmin = max(min(bbox[0], 1.), 0.)
    ymin = max(min(bbox[1], 1.), 0.)
    xmax = max(min(bbox[2], 1.), 0.)
    ymax = max(min(bbox[3], 1.), 0.)
    return xmin, ymin, xmax, ymax


def resize_img(img, target_size):
    """
    保持比例的缩放图片
    :param img:
    :param target_size:
    :return:
    """
    percent_h = float(target_size[1]) / img.size[1]
    percent_w = float(target_size[2]) / img.size[0]
    percent = min(percent_h, percent_w)
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    w_off = (target_size[1] - resized_width) / 2
    h_off = (target_size[2] - resized_height) / 2
    img = img.resize((target_size[1], target_size[2]), Image.ANTIALIAS)
    return img


def read_image(img_path):
    """
    读取图片
    :param img_path:
    :return:
    """
    img = Image.open(img_path)
    resized_img = img.copy()
    img = resize_img(img, target_size)
    if img.mode != 'RGB':                                       #颜色通道为RGB
        img = img.convert('RGB')
    img = np.array(img).astype('float32').transpose((2, 0, 1))  #转置 HWC to CHW 数据通道
    img -= 127.5                                                #
    img *= 0.007843                                             #归一化到-1到1
    img = img[np.newaxis, :]
    return img, resized_img


def infer(image_path):
    """
    预测,将结果保存到一副新的图片中
    :param image_path:
    :return:
    """
    #将预测图片按比例进行缩放
    tensor_img, resized_img = read_image(image_path)  
    t1 = time.time()
    #执行预测,并获取预测结果
    nmsed_out = exe.run(inference_program,
                        feed={feed_target_names[0]: tensor_img},
                        fetch_list=fetch_targets,
                        return_numpy=False)
    period = time.time() - t1
    print("predict result:{0} cost time:{1}".format(nmsed_out, "%2.2f sec" % period))
    nmsed_out = np.array(nmsed_out[0])        #进行非极大值抑制
    last_dot_index = image_path.rfind('.')
    out_path = image_path[:last_dot_index]
    out_path += '-reslut.jpg'
    print("result save to:", out_path)
    #在图片上绘制矩形框
    draw_bbox_image(resized_img, nmsed_out, out_path)


#开始推测
image_path = 'data/cat.jpg'
infer(image_path)

 

 

 

你可能感兴趣的:(【新手入门】课程9-深度学习进阶CV-目标检测)