Spark2.2源码分析:Spark-Submit提交任务

Spark2.2源码阅读顺序

1. Spark2.2源码分析:Spark-Submit提交任务
2. Spark2.2源码分析:Driver的注册与启动


客户端通过spark-submit命令提交作业后,会在spark-submit进程里做一系列操作(对应图中0部分)
spark集群启动后会干的事情大概画图如下:

Spark2.2源码分析:Spark-Submit提交任务_第1张图片

概述整体步骤
1.先执行spark-submit脚本,准备参数,选择集群管理器
2.启动driver,注册application,启动executor,划分任务,分发任务
3.返回(或则落地)计算结果,spark任务计算完成

1.用户提交Spark命令如下

./bin/spark-submit \
  --class cn.face.cdp.run.WordCount \
  --master spark://192.168.1.11:7077 \
  --deploy-mode cluster \
  --executor-memory 4G \
  --total-executor-cores 20 \
  --supervise \
  ./face.jar \
  city

这个sh内部会执行一个javal类的main方法

export PYTHONHASHSEED=0
exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"

显而易见,我们找到这个类的main方法就能一窥究竟

org.apache.spark.deploy.SparkSubmit

override def main(args: Array[String]): Unit = {
	//检查参数封装后返回
    val appArgs = new SparkSubmitArguments(args) 
   ...
    //匹配传过来的类型,这里走submit case
    appArgs.action match {
      case SparkSubmitAction.SUBMIT => submit(appArgs)
      case SparkSubmitAction.KILL => kill(appArgs)
      case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
    }
  }
 private def submit(args: SparkSubmitArguments): Unit = {
 //这里的prepareSubmitEnvironment非常复杂,主要负责设置环境变量,系统参数,选择集群管理器等等
 //返回的childMainClass默认选择了"org.apache.spark.deploy.Client",由这个类来当作入口提交Driver
    val (childArgs, childClasspath, sysProps, childMainClass) = prepareSubmitEnvironment(args)

    def doRunMain(): Unit = {
      if (args.proxyUser != null) {
        val proxyUser = UserGroupInformation.createProxyUser(args.proxyUser,
          UserGroupInformation.getCurrentUser())
        try {
          proxyUser.doAs(new PrivilegedExceptionAction[Unit]() {
            override def run(): Unit = {
              runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose)
            }
          })
        } catch {
	        ...
        }
      } else {
      .	//runMain方法就直接用反射调用了Client类的main方法
        runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose)
      }
    }

org.apache.spark.deploy.Client

def main(args: Array[String]) {
	...
    val conf = new SparkConf()
    val driverArgs = new ClientArguments(args)

    if (!conf.contains("spark.rpc.askTimeout")) {
      conf.set("spark.rpc.askTimeout", "10s")
    }
    val rpcEnv =
      RpcEnv.create("driverClient", Utils.localHostName(), 0, conf, new SecurityManager(conf))
	//实例化自身RPC通信终端,实例化master引用端
    val masterEndpoints = driverArgs.masters.map(RpcAddress.fromSparkURL).
      map(rpcEnv.setupEndpointRef(_, Master.ENDPOINT_NAME))
    rpcEnv.setupEndpoint("client", new ClientEndpoint(rpcEnv, driverArgs, masterEndpoints, conf))

    rpcEnv.awaitTermination()
  }

ClientEndpoint这个类继承了ThreadSafeRpcEndpoint,所以会重写onStart,并自动调用

 override def onStart(): Unit = {
    driverArgs.cmd match {
      case "launch" =>
      	//如果用的Standalone cluster模式,就会启动这个进程
        val mainClass = "org.apache.spark.deploy.worker.DriverWrapper"
		...
        val command = new Command(mainClass,
          Seq("{{WORKER_URL}}", "{{USER_JAR}}", driverArgs.mainClass) ++ driverArgs.driverOptions,
          sys.env, classPathEntries, libraryPathEntries, javaOpts)
		//创建driver信息对象,并且发送消息到master进行注册
        val driverDescription = new DriverDescription(
          driverArgs.jarUrl,
          driverArgs.memory,
          driverArgs.cores,
          driverArgs.supervise,
          command)
        ayncSendToMasterAndForwardReply[SubmitDriverResponse](
        //这里发送的caseClass是RequestSubmitDriver,所以去master找到这个case接受逻辑就行
          RequestSubmitDriver(driverDescription))
      case "kill" =>
        val driverId = driverArgs.driverId
        ayncSendToMasterAndForwardReply[KillDriverResponse](RequestKillDriver(driverId))
    }
  }

org.apache.spark.deploy.master.Master

 override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
 	//此case处理提交Driver请求
    case RequestSubmitDriver(description) =>
      //如果此master不处于存活状态,返回client false状态
      if (state != RecoveryState.ALIVE) {
        val msg = s"${Utils.BACKUP_STANDALONE_MASTER_PREFIX}: $state. " +
          "Can only accept driver submissions in ALIVE state."
        context.reply(SubmitDriverResponse(self, false, None, msg))
      } else {
        logInfo("Driver submitted " + description.command.mainClass)
        //创建Driver信息,由此master进程维护
        val driver = createDriver(description)
        //持久化driver信息,以用于之后的主备切换或者重启能重读driver信息
        persistenceEngine.addDriver(driver)
        //加入“等待调度的driver列表”
        waitingDrivers += driver
      	//加入master内存中所管理的driver列表
        drivers.add(driver)
        //由于有新的driver需要运行,所以开始调度资源
        schedule()
        //返回消息给Client,Client结束进程
        context.reply(SubmitDriverResponse(self, true, Some(driver.id),
          s"Driver successfully submitted as ${driver.id}"))
      }
      case ...
}

org.apache.spark.deploy.Client

override def receive: PartialFunction[Any, Unit] = {

    case SubmitDriverResponse(master, success, driverId, message) =>
      logInfo(message)
      if (success) {
        activeMasterEndpoint = master
        //这个方法主要是,等5秒后再次去master查询当前driver的状态,然后打印日志,最后结束当前进程
        pollAndReportStatus(driverId.get)
		//这个分支是如果请求的master不为live,则直接退出进程
      } else if (!Utils.responseFromBackup(message)) {
        System.exit(-1)
      }
    case ...
}

至此,spark-submit所执行的流程结束(Client进程结束,客户端与集群断开连接),接下来就是driver注册与启动
2. Spark2.2源码分析:Driver的注册与启动

你可能感兴趣的:(Spark2.2源码顺序分析)