- dp背包问题
|CXHAO|
c++
有NN件物品和一个容量是VV的背包。每件物品只能使用一次。第ii件物品的体积是vivi,价值是wiwi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。接下来有NN行,每行两个整数vi,wivi,wi,用空格隔开,分别表示第ii件物品的体积和价值。输出格式输出一个整数,表示最大价值
- 贪心算法在背包问题上的运用(Python)
MATLAB卡尔曼
智能算法的MATLAB实现贪心算法python算法
背包问题有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?这就是典型的背包问题(又称为0-1背包问题),也是具体的、没有经过任何延伸的背包问题模型。背包问题的传统求解方法较为复杂,现定义有一个可以载重为8kg的背包,另外还有4个物品,物品的价值和质量数据如下表,不考虑背包的容量。4个物品的总质量大于8kg,所以要想在有限载重的背包携带更多质量的物品,
- 代码随想录 Day 42 | 【第九章 动态规划 part 05】完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶)
Accept17
动态规划算法
一、完全背包完全背包视频讲解:带你学透完全背包问题!和01背包有什么差别?遍历顺序上有什么讲究?_哔哩哔哩_bilibilihttps://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85.ht
- 面试基础---面试刷题推荐 动态规划算法:背包问题与最长公共子序列
WeiLai1112
leetcode刷题算法面试动态规划java分布式
动态规划算法:背包问题与最长公共子序列引言:动态规划的核心思想动态规划(DynamicProgramming,DP)是一种解决复杂问题的算法思想,通过将问题分解为子问题,并保存子问题的解,避免重复计算,从而提高效率。本文将详细讲解动态规划在背包问题和最长公共子序列中的应用,并提供易于记忆的代码模板。一、背包问题1.1问题描述给定n个物品,每个物品有一个重量w[i]和一个价值v[i]。现在有一个容量
- 笔记:代码随想录算法训练营第35天: 01背包问题 二维、 01背包问题 一维 、LeetCode416. 分割等和子集
jingjingjing1111
算法leetcode数据结构动态规划笔记
学习资料:代码随想录这一块儿学得挺痛苦注:文中含大模型生成内容动态规划:01背包理论基础卡码网第46题思路:五部曲定义:dp[i][j]为第i个物品背包容量为j,能装下的最大价值递推公式:dp[i][j]的值等于dp[i-1][j]的值和dp[i-1][j-weight[i]]+value相比的最大值,后者为看放下当前物品+减去当前物品的容量能放下什么价值,当然,要是放不下当前物品,就算了,保持原
- 回溯法-子集树递归树-装载问题
王安安的记录
算法回溯法c++算法
回溯法深度优先策略(回忆深度优先遍历二叉树思路)解题步骤:1)针对所给问题,定义问题的解空间;例如,n个物品的0-1背包问题所对应的解空间树是一棵子集树。2)确定易于搜索的解空间结构;3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数(****约束函数除去不满足约束的子树,限界函数减去得不到最优解的子树**)**避免无效搜索##子集树和递归树扩展结点:一个正在产生儿子的结点称为扩展结点。活结点
- 01背包问题简介
天狼星——白羽
python
01背包问题是动态规划算法中非常经典的一个问题,广泛应用于优化选择场景。它描述的是:给定一组物品(每个物品有重量和价值),以及一个最大承重能力的背包,在不超过背包容积的前提下,如何挑选这些物品使得装入背包中的总价值最高。基本要素n件物品每一件都有两个属性:weight[i]表示第i物品的重量;value[i]表示该物品的价值。背包的最大承载量为W;目标是在满足重量限制的情况下获得最大的总价值Vma
- Leetcode 刷题笔记1 动态规划part04
平乐君
leetcode笔记动态规划
leetcode最后一块石头的重量||问题转化,把石头问题转化为背包问题,在target容量范围内所能装的最大石头重量classSolution:deflastStoneWeightII(self,stones:List[int])->int:total=sum(stones)target=total//2dp=[0]*(target+1)forstoneinstones:forjinrange(
- 算法分析-贪心算法
old-handsome
算法贪心算法算法
文章目录前言一、定义二、特点三、使用场景适用场景:何时使用部分背包问题活动安排问题最优装载问题最小生成树Prim算法:按点检索,适用于稠密图Kruskal算法:并查集+最小生成树Dijkstra算法:不能存在负权边,松弛操作总结前言本博客仅做学习笔记,如有侵权,联系后即刻更改科普:贪心算法一、定义贪心算法是指在对问题进行求解时,在每一步选择中都采取最好或者最优(最有利)的选择,从而希望最终结果是最
- 蓝桥杯算法基础(36)动态规划dp经典问题详解
湖前一人对影成双
算法蓝桥杯动态规划
动态规划-动态规划方法方法代表了这一类问题(最优子结构or子问题最优性)的有一半解法,是设计方法或者策略,不是具体算法-本质是递推,核心是找到状态转移的方式,写出dp方程-形式:记忆性递归递推01背包问题有n个重量和价值分别为wi,vi的物品,从这些物品中挑选出总重量不超过n的物品,求所有挑选方案中的值总和的最大值1=w[i]){intv1=v[i]+dfs(i+1,ww-w[i]);//选择当前
- 华为OD机试 - 核酸最快检测效率 - 动态规划、背包问题(Python/JS/C/C++ 2024 E卷 200分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述在系统、网络均正常的情况下组织核酸采样员和
- 【动态规划】 解决背包问题 Python
Alexlllly
Python实现算法python算法动态规划leetcode
【动态规划】解决背包问题Python背包问题背包问题现在有3个物品篮球1kg1000元吉他3kg2000元单反4kg2500元有1个背包重4kg问怎么拿物品价值最大运用动态规划DP来解决此问题方法代码【源码】——思路来自麻省理工背包问题defbackpack(memory,item_weight,values,last_weight,index):'''memory:如果是已经计算过得分支则直接返
- 部分背包问题(贪心算法)
萧毅寒
贪心算法算法
一、概念与问题背景部分背包问题是一种经典的优化问题,其中给定一系列物品,每个物品有一定的重量和价值,目标是在一个固定容量的背包中装入物品,使得背包中物品的总价值最大。与0/1背包问题不同,部分背包问题允许将物品分割,即可以只选择物品的一部分装入背包。二、贪心策略介绍对于部分背包问题,贪心算法是一种有效的解决策略。贪心策略的基本思想是,在每一步选择中,都采取在当前状态下最好或最优(即最有利)的选择,
- 算法研究员技术图谱和学习路径
执于代码
开发者职业加速服务算法学习
一、基础阶段:构建算法与数学根基数据结构与基础算法数据结构:数组、链表、栈、队列、哈希表、树(二叉搜索树、堆、字典树)、图等。基础算法:排序(快速排序、堆排序)、查找(二分查找)、递归与分治、贪心算法、简单动态规划(背包问题)、字符串匹配(KMP、Rabin-Karp)、图遍历(BFS/DFS)等。实践方法:通过LeetCode等平台刷题(如“剑指Offer”系列),掌握算法原理与代码实现。数学基
- 详解动态规划之01背包问题及其空间压缩(图文并茂+例题讲解)
看繁星aa
动态规划算法
1.动态规划问题的本质记忆化地暴力搜索所有可能性来得到问题的解我们常常会遇到一些问题,需要我们在n次操作,且每次操作有k种选择时,求出最终需要的最小或最大代价。处理类似的问题,我们一般需要遍历所有的可能性(相当于走一遍所有的路径),然后找到我们所需要的解。很明显我们可以构成一棵“决策树”,假设n=2,k=3,那么:我们可以通过DFS或者BFS来遍历整棵树,从而搜寻到我们需要的结果。时间复杂度:O(
- leetcode刷题-动态规划06
emmmmXxxy
leetcode动态规划算法
代码随想录动态规划part06|322.零钱兑换、279.完全平方数、139.单词拆分322.零钱兑换279.完全平方数139.单词拆分关于多重背包,你该了解这些!背包问题总结篇!322.零钱兑换leetcode题目链接代码随想录文档讲解思路:完全背包整理:完全背包理论基础:装满这个背包可得的最大价值(遍历顺序可以颠倒)零钱兑换2:装满背包有多少种方法(每种方法不强调顺序,组合数)(先遍历物品再遍
- CSP-J/S复赛算法 动态规划初步
人才程序员
CSP-J算法动态规划深度优先c++noiCSP-J/S
文章目录前言动态规划动态规划常见形式动态规划求最值的几个例子1.**背包问题**2.**最短路径问题**3.**最小硬币找零问题**4.**最长递增子序列**总结最优子结构举个简单的例子其他例子条件DP的核心就是穷举具体解释递归的算法时间复杂度dp数组的迭代解法通俗易懂的解释比喻状态转移方程详解状态转移方程中的状态概念通俗易懂的解释:举个例子:状态总结:DP的无后效性通俗易懂的解释举个例子特点总结
- 一张表解释01背包问题
apcipot_rain
算法算法蓝桥杯c语言
背包问题的概述:已知背包容量为m,有一堆物品(n个),每个物品都有重量和价值,求解怎么放物品能让拿到的东西价值达到最大。一道测试用例:104310411512613dp数组可视化:操作n\m12345678910输入3101001010101010101010输入4102001011111121212121输入5123001011121221222222输入61340010111213212223
- Java 算法和数据结构 答案整理,最新面试题
扫地僧009
互联网大厂面试题java算法数据结构
Java中如何使用动态规划求解背包问题?1、定义子问题:首先确定动态规划状态,通常以物品数量和背包容量为变量定义子问题,例如dp[i][j]表示前i件物品放入容量为j的背包所能获得的最大价值。2、确定状态转移方程:基于是否选择当前物品,将问题分为两个子问题,即dp[i][j]=max(dp[i-1][j],dp[i-1][j-weight[i]]+value[i]),表示选择当前物品和不选择当前物
- 背包问题-动态规划算法(附带Python代码解析)
心碎小猫p
算法动态规划python
一.背包问题概述:给定n种物品和一个容量为capacity的背包,其中每一个物品的重量和价值已知。问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?二.分析过程:1.思路:对于每一个物品只有两种选择,第一种情况:装入当前物品;第二种情况:不装入当前物品。我们从第一个物品开始,将其重量和背包容量进行比较,如果比背包容量小,则选择将这个物品装入背包,记录它的价值(如果比背包容量大,忽略
- 贪心算法.
pianmian1
贪心算法算法
贪心算法是指只从当前角度出发,做出当前情景下最好的选择,在某种意义上来说是局部最优解,并不从全局的角度做决策.如果贪心策略选择不恰当,可能无法得到全局最优解.贪心算法的基本流程如下:1.分析问题,确定优化目标,对变量进行初始化2.制定贪心策略:在制定贪心策略时需要证明所选贪心策略一定可以得到全局最优解,若找到反例则推翻当前贪心策略,重新确定贪心策略.完全背包问题本节以完全背包问题为例,说明贪心算法
- 动态规划之背包问题--python版本
我是小码搬运工
#python基础动态规划背包问题python版本
动态规划之背包问题–python版本问题已知一个最大量的背包,给定一组给定固定价值和固定体积的物品,求在不超过最大值的前提下,能放入背包中的最大总价值。解题思路该问题是典型的动态规划问题,分为三种不同的类型(0-1背包问题、完全背包和多重背包问题)解题关键–状态转移表达式:B(k,C)=max(B(k−1,C),B(k−1,C−ci)+vi)B(k,C)=max(B(k-1,C),B(k-1,C-
- 动态规划之背包问题全解
学会了,不,学废了
动态规划
概述———动态规划提出人:理查德·贝尔曼本质:一张表格处理方法内容:把原问题分解为若干子问题,自底向上先求解最小子问题,把结果储存在表格中,求解大的子问题时直接从表格中查询小的子问题的解,以避免重复计算,从而提高效率。一、动态规划求解原理适用范围:问题需要具备3个性质———最优子结构、子问题重叠、无后效性。最优子结构指问题最优解包含其子问题的最优解,是使用动态规划的基本条件。三要素:状态、阶段、决
- 动态规划之背包问题的Python实现
名侦探debug
Python数据结构python数据结构动态规划求解
目录1.问题描述2.动态规划之网格法3.python实现1.问题描述题目来源于《算法图解》第9章练习题9.2,如下图所示。对于背包问题,通常的做法有列举法、贪婪算法和动态规划(1)列举法:列举出所有的可能情况,再选择最优解,但当情况很多时,这种算法复杂度很高(2)贪婪算法:在容量允许范围内,每次都拿剩余物品中价值最高的,贪婪算法能够快速解决复杂度很高的问题,但通常得到的是次优解,但就对这个题目而言
- 动态规划之背包问题
于冬恋
动态规划算法
动态规划是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。目录01背包问题完全背包问题多重背包问题二维费用背包问题(1)01背包问题给定n个物体,和一个容量为c的背包,物品i的重量为wi,其价值为应该如何选择装入背包的物品使其获得的总价值最大。可以用贪心算法,但是不一定能达到最优解,所以用动态规划解决创建一个数组dp[i][j]i
- 刷题计划day29 动规01背包(一)【01背包】【分割等和子集】【最后一块石头的重量 II】
哈哈哈的懒羊羊
算法java数据结构leetcode动态规划背包问题蓝桥杯
⚡刷题计划day29动规01背包(一)开始,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录背包问题前言01背包二维数组dp[i][j]关于是否放物品:关于二维dp遍历顺序:一维数组dp(滚动数组)关于一维dp遍历顺序:题目一:416.分割等和子集题目二:1049.最后一块石头的重量II背包问题前言对于面试的话,其实掌握01背包和完全背包,就够用了,最多可以再来一个多重背
- AcWing中01背包问题
ONEPEICE-ing
算法AcWing
在acwing.com中的题,本次为01背包问题【具体视频可通过www.acwing.com/video/214网站观看(ps:是跟着视频中的老师一起写的,并不是原创~~~)】01背包问题题目:有N件物品和一个容量是V的背包。每件物品只能使用一次。第i间物品的体积是vi,价值是wi,求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大,输出最大价值。输入格式:第一行两个整数,N
- 背包总结——0-1背包及完全背包问题总结及代码模板
Baymax的学习日志
c++动态规划算法c++
背包总结背包问题通常是多种物品有多个属性,且已知条件为某属性被受限,求另一属性的最大/最小/等于/存在不存在。以0-1背包为例解释:n个物品具有的属性为重量和价值,其中总重量C将重量的属性限制住,求最大价值,即求另一属性的特征。针对背包问题:1、先判断属于0-1背包还是完全背包。2、看是求最大值/最小值/等值/是否存在/排列/组合(排列/组合问题通常出现在完全背包中)。确定了背包类型及要求的问题后
- 动态规划——完全背包问题(力扣322: 零钱兑换)
索利亚噶通
动态规划算法
前言这次我们要说的是完全背包问题,还记得下面这张图吗,可以看到01背包问题和完全背包问题的区别在于每种物品的数量01背包问题中每种物品只有一个,只有选与不选两种情况完全背包问题种每种物品有多个,选不选,选多少都是考虑的问题定义:一个背包容积为C,一共N种物品,分别编号0,1,2....i,i+1,.....N-1,第i个物品的重量为weight[i],价值为value[i],每种物品可以选用任意多
- 【进击的算法】动态规划——不同维度的背包问题
蓝色学者i
算法动态规划数据结构
文章目录前言动态规划的维度二维动规leetcode416、分割等和子集leetcode1049.最后一块石头的重量IIleetcode494、目标和三维动规leetcode474.一和零结语前言大家好久不见,这次我们一起来学习一下动态规划中怎么确定维度,和对应问题如何解决。动态规划的维度一个维度:只有物品两个维度:物品和容量三个维度:物品和容量1和容量2之前讲解动态规划问题时,斐波那契数列就是一个
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟