SPFA 最短路

    求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm。 
    SPFA算法是西南交通大学段凡丁于1994年发表的。
    从名字我们就可以看出,这种算法在效率上一定有过人之处。 
    很多时候,给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了。有人称spfa算法是最短路的万能算法。

    简洁起见,我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路。
    我们用数组dis记录每个结点的最短路径估计值,可以用邻接矩阵或邻接表来存储图G,推荐使用邻接表。

spfa的算法思想(动态逼近法):
    设立一个先进先出的队列q用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。 
    松弛操作的原理是著名的定理:“三角形两边之和大于第三边”,在信息学中我们叫它三角不等式。所谓对结点i,j进行松弛,就是判定是否dis[j]>dis[i]+w[i,j],如果该式成立则将dis[j]减小到dis[i]+w[i,j],否则不动。 
    下面举一个实例来说明SFFA算法是怎样进行的:




和广搜bfs的区别:
    SPFA 在形式上和广度(宽度)优先搜索非常类似,不同的是bfs中一个点出了队列就不可能重新进入队列,但是SPFA中一个点可能在出队列之后再次被放入队列,也就是一个点改进过其它的点之后,过了一段时间可能本身被改进(重新入队),于是再次用来改进其它的点,这样反复迭代下去。

判断有无负环:

  如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)

 算法的描述:

 1 void  spfa(s);  //求单源点s到其它各顶点的最短距离
 2     for i=1 to n do { dis[i]=∞; vis[i]=false; }   //初始化每点到s的距离,不在队列
 3     dis[s]=0;  //将dis[源点]设为0
 4     vis[s]=true; //源点s入队列
 5     head=0; tail=1; q[tail]=s; //源点s入队, 头尾指针赋初值
 6     while headdo {
 7        head+1;  //队首出队
 8        v=q[head];  //队首结点v
 9        vis[v]=false;  //释放对v的标记,可以重新入队
10        for 每条边(v,i)  //对于与队首v相连的每一条边
11         if (dis[i]>dis[v]+a[v][i])  //如果不满足三角形性质
12          dis[i] = dis[v] + a[v][i]   //松弛dis[i]
13         if (vis[i]=false) {tail+1; q[tail]=i; vis[i]=true;} //不在队列,则加入队列
14     } 
具体代码实现:
/*********************************************/  
//  d数组类似迪杰斯特拉的dis数组,记录起点到i点的局部最优解  
//  c数组用来记录访问 i 点的次数  
//  vis 记录是否在队列里面  ,与dijkstra中的s数据作用不同
//  用数组模拟邻接表存图,w数组为权值  
/*********************************************/  
bool spfa_bfs(int s) // s为图的起点  
{  
    queue  q; //  队列里存点  
    memset(d,0x3f,sizeof(d));    
    memset(c,0,sizeof(c));  
    memset(vis,0,sizeof(vis));  
    q.push(s);  
    vis[s]=1;  
    c[s]=1;  
    d[s]=0;  
    //顶点入队vis要做标记,另外要统计顶点的入队次数  
    while(!q.empty())  
    {  
        int x;  
        x=q.front();  
        q.pop();  
        vis[x]=0;  
        //队头元素出队,并且消除标记  
        for(int k=f[x]; k!=0; k=nnext[k]) //遍历顶点x的邻接表  
        {  
            int y=v[k];  
            if( d[x]+w[k] < d[y]) //如果可以松弛  
            {  
                d[y]=d[x]+w[k];  //松弛  
                if(!vis[y])  //顶点y不在队内  不要重复入队列  
                {  
                    vis[y]=1;    //标记  
                    c[y]++;      //统计次数  
                    q.push(y);   //入队  
                    if(c[y]>NN)  //超过入队次数上限,说明有负环  
                        return false;  
                }  
            }  
        }  
    }  
    return true;  
最短路径本身怎么输出?
    在一个图中,我们仅仅知道结点A到结点E的最短路径长度,有时候意义不大。这个图如果是地图的模型的话,在算出最短路径长度后,我们总要说明“怎么走”才算真正解决了问题。如何在计算过程中记录下来最短路径是怎么走的,并在最后将它输出呢?
    我们定义一个path[]数组,path[i]表示源点s到i的最短路程中,结点i之前的结点的编号(父结点),我们在借助结点u对结点v松弛的同时,标记下path[v]=u,记录的工作就完成了。
    如何输出呢?我们记录的是每个点前面的点是什么,输出却要从最前面到后面输出,这很好办,递归就可以了: 
 1 c++ code:
 2 void printpath(int k){
 3     if (path[k]!=0) printpath(path[k]);
 4     cout << k << ' ';
 5 }
 6 
 7 pascal code:
 8 procedure printpath(k:longint);
 9   begin
10     if path[k]<>0 then printpath(path[k]);
11     write(k,' ');
12   end;
13 
14 spfa算法模板(邻接矩阵):
15 c++ code:
16 void spfa(int s){
17     for(int i=0; i<=n; i++) dis[i]=99999999; //初始化每点i到s的距离
18     dis[s]=0; vis[s]=1; q[1]=s;  队列初始化,s为起点
19     int i, v, head=0, tail=1;
20     while (head<tail){   队列非空
21         head++; 
22         v=q[head];  取队首元素
23         vis[v]=0;   释放队首结点,因为这节点可能下次用来松弛其它节点,重新入队
24         for(i=0; i<=n; i++)  对所有顶点
25            if (a[v][i]>0 && dis[i]>dis[v]+a[v][i]){  
26                 dis[i] = dis[v]+a[v][i];   修改最短路
27                 if (vis[i]==0){  如果扩展结点i不在队列中,入队
28                     tail++;
29                     q[tail]=i;
30                     vis[i]=1;
31                 }
32            }
33         
34     }
35 }
36 
37 pascal code:
38 procedure spfa(s:longint);
39   var i,j,v,head,tail:longint;
40   begin
41     for i:=0 to n do dis[i]:=99999999;
42     dis[s]:=0; vis[s]:=true; q[1]:=s;
43     head:=0;tail:= 1;
44     while headdo
45        begin
46          inc(head);
47          v:=q[head];
48          vis[v]:=false;
49          for i:=0 to n do
50            if dis[i]>dis[v]+a[v,i] then
51              begin
52                dis[i]:= dis[v]+a[v,i];
53                if not vis[i] then
54                  begin
55                    inc(tail);
56                    q[tail]:=i;
57                    vis[i]:=true;
58                  end;
59              end;
60 
61       end;
62   end; 

spfa优化——深度优先搜索dfs

         在上面的spfa标准算法中,每次更新(松弛)一个结点u时,如果该结点不在队列中,那么直接入队。
    但是有负环时,上述算法的时间复杂度退化为O(nm)。能不能改进呢?
    那我们试着使用深搜,核心思想为每次从更新一个结点u时,从该结点开始递归进行下一次迭代。
使用dfs优化spfa算法:
 1 pascal code:
 2 procedure spfa(s:longint);
 3   var i:longint;
 4   begin
 5     for i:=1 to b[s,0] do  //b[s,0]是从顶点s发出的边的条数
 6            if dis[b[s,i]]>dis[s]+a[s,b[s,i]] then  //b[s,i]是从s发出的第i条边的另一个顶点
 7              begin
 8                dis[b[s,i]]:=dis[s]+a[s,b[s,i]];
 9                spfa(b[s,i]);
10              end;
11   end; 
12 
13 C++ code:
14 void spfa(int s){
15     for(int i=1; i<=b[s][0]; i++)  //b[s,0]是从顶点s发出的边的条数
16        if (dis[b[s][i]>dis[s]+a[s][b[s][i]]){  //b[s,i]是从s发出的第i条边的另一个顶点
17         dis[b[s][i]=dis[s]+a[s][b[s][i]];
18         spfa(b[s][i]);
19        }
20 }
         相比队列,深度优先搜索有着先天优势:在环上走一圈,回到已遍历过的结点即有负环。绝大多数情况下的时间复杂度为O(m)级别。
    那我们试着使用深搜,核心思想为每次从更新一个结点u时,从该结点开始递归进行下一次迭代。
    对于WorldRings(ACM-ICPC Centrual European 2005)这道题,676个点,100000条边,查找负环dfs仅仅需219ms。
    一个简洁的数据结构和算法在一定程度上解决了大问题。
判断存在负环的条件:重新经过某个在当前搜索栈中的结点。
 
spfa优化——前向星优化
         星形(star)表示法的思想与邻接表表示法的思想有一定的相似之处。对每个结点,它也是记录从该结点出发的所有弧,但它不是采用单向链表而是采用一个单一的数组表示。也就是说,在该数组中首先存放从结点1出发的所有弧,然后接着存放从节点2出发的所有孤,依此类推,最后存放从结点n出发的所有孤。对每条弧,要依次存放其起点、终点、权的数值等有关信息。这实际上相当于对所有弧给出了一个顺序和编号,只是从同一结点出发的弧的顺序可以任意排列。此外,为了能够快速检索从每个节点出发的所有弧,我们一般还用一个数组记录每个结点出发的弧的起始地址(即弧的编号)。在这种表示法中,可以快速检索从每个结点出发的所有弧,这种星形表示法称为前向星形(forward star)表示法。
    例如,在下图中,仍然假设弧(1,2),(l,3),(2,4),(3,2),(4,3),(4,5),(5,3)和(5,4)上的权分别为8,9,6,4,0,7,6和3。此时该网络图可以用前向星形表示法表示如下:
  
前向星存储图:
 1 #include 
 2 using namespace std;
 3 int first[10005];
 4 struct edge{
 5     int point,next,len;
 6 } e[10005];
 7 void add(int i, int u, int v, int w){
 8         e[i].point = v;
 9         e[i].next = first[u];
10         e[i].len = w;
11         first[u] = i;
12 }
13 int n,m;
14 int main(){
15     int u,v,w;
16     cin >> n >> m;
17     for (int i = 1; i <= m; i++){
18         cin >> u >> v >> w;
19         add(i,u,v,w);
20     }  //这段是读入和加入
21     for (int i = 0; i <= n; i++){
22         cout << "from " << i << endl;
23         for (int j = first[i]; j; j = e[j].next)  //这就是遍历边了
24             cout << "to " << e[j].point << " length= " << e[j].len << endl;
25     }
26 }

 来自资料:

http://blog.csdn.net/WR_technology/article/details/51254054

http://blog.csdn.net/xunalove/article/details/70045815

转载于:https://www.cnblogs.com/curo0119/p/8515811.html

你可能感兴趣的:(SPFA 最短路)