剑指offer面试题42:连续子数组的最大和(Java 实现)

题目:输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)
例如输入的数组为{1,-2,3,10,-4,7,2,-5},和最大的子数组为{3,10,-4,7,2},因此输出为该子数组的和18。

方法一:通过枚举数组的所有子数组并求它们的和,一个长度为n的数组,子数组总共有 n(n-1)/2,计算所有子数组的和,时间复杂度为O(n²)。

方法二:通过分析数组的规律,时间复杂度为O(n)

思路:遍历一次数组,从第一个元素开始累加数组,需要判断当前和,如果当前和小于等于0,就保存当前和的最大值,从下一个元素开始累加;如果当前和大于0,直接累加后面的元素即可,然后再次判断当前和。
可以定义一个 greatSum 来保存当前和的最大值,需要注意的是要避免数组输入无效返回的0和累积数组最大值为0冲突了。

public class test_forty_two {
    boolean invalidInput = false;
    public int FindGreatestSumOfSubArray(int[] array){
        if (array == null || array.length == 0){
            invalidInput = true;     //表示这是输入无效输入输出的0
            return 0;
        }

        int greatestSum = array[0];   //用来保存当前的最大值
        int currentSum = 0;  //表示当前的和
        for (int i=0; i < array.length; i++){
            if (currentSum <= 0){
                //当前和小于等于0,保存当前的最大值
                currentSum = array[i];
            } else {
                //当前和大于0,接着累加后面的元素
                currentSum = currentSum + array[i];
            }
            if (currentSum > greatestSum){
                greatestSum = currentSum;
            }
        }
        return greatestSum;
    }
}

方法三:利用递归转动态规划的思想

这个公式的意义:当以第i-1个数字结尾的子数组中所有的数字的和小于0时,如果把这个负数与第i个数累加,得到的结果比第i个数字本身还要小,所以这种情况下以第i个数字结尾的子数组就是第i个数字本身。如果以第i-1个数字结尾的子数组中所有的数字的和大于0,与第i个数字累加就得到以第i个数字结尾的子数组中所有的数字的和。

思路:

  1. F(i):以array[i]为末尾元素的子数组的和的最大值
    F(i)=max(F(i-1)+array[i] , array[i])
  2. result:所有子数组的和的最大值
    result = max(result,F(i))
 //方法三:利用动态规划
    public int FindGreatestSumOfSubArray(int[] array){
        int max = array[0];  //表示以i结尾的子数组和的最大值
        int result = array[0];  //所有子数组和的最大值

        for (int i=1; i

 

你可能感兴趣的:(剑指offer)