Spark

  1. 操作系统环境准备
    (1)安装VMWare
    下载地址:http://pan.baidu.com/s/1bniBipD
    密码:pbdw
    安装过程略
    1
    2
    3
    (2)下载操作系统并安装
    Ubuntu 10.04操作系统下载地址:

链接:http://pan.baidu.com/s/1kTy9Umj 密码:2w5b
1
CentOS 6.5下载地址:

下载地址:http://pan.baidu.com/s/1mgkuKdi
密码:xtm5
1
2
本实验要求装三台:CentOS 6.5,可以分别安装,也可以安装完一台后克隆两台,具体过程略。初学者,建议三台分别安装。安装后如下图所示:

(3)CentOS 6.5网络配置
安装好的虚拟机一般默认使用的是NAT(关于NAT、桥接等虚拟机网络连接方式参见本人博客:http://blog.csdn.net/lovehuangjiaju/article/details/48183485),由于三台机器之间需要互通之外,还需要与本机连通,因此采用将网络连接方式设置为Bridged(三台机器相同的设置),如下图所法:

修改主机名
(1)修改centos_salve01虚拟机主机名:

vim /etc/sysconfig/network
1
/etc/sysconfig/network修改后的内容如下:

(2)vim /etc/sysconfig/network命令修改centos_slave02虚拟机主机名
/etc/sysconfig/network修改后的内容如下:

(3)vim /etc/sysconfig/network命令修改centos_slave03虚拟机主机名
/etc/sysconfig/network修改后的内容如下:

修改主机IP地址
在大家在配置时,修改/etc/sysconfig/network-scripts/ifcfg-eth0文件对应的BOOTPROT=static、IPADDR、NETMASK、GATEWAY及DNS1信息即可

(1)修改centos_salve01虚拟机主机IP地址:

vim /etc/sysconfig/network-scripts/ifcfg-eth0

修改后内容如下:

DEVICE="eth0"
BOOTPROTO="static"
HWADDR="00:0c:29:3f:69:4d"
IPV6INIT="yes"
NM_CONTROLLED="yes"
ONBOOT="yes"
TYPE="Ethernet"
UUID="5315276c-db0d-4061-9c76-9ea86ba9758e"
IPADDR="192.168.1.111"
NETMASK="255.255.255.0"
GATEWAY="192.168.1.1"
DNS1="8.8.8.8"

(2)修改centos_salve02虚拟机主机IP地址:

vim /etc/sysconfig/network-scripts/ifcfg-eth0

修改后内容如下:

DEVICE="eth0"
BOOTPROTO="static"
HWADDR="00:0c:29:64:f9:80"
IPV6INIT="yes"
NM_CONTROLLED="yes"
ONBOOT="yes"
TYPE="Ethernet"
UUID="5315276c-db0d-4061-9c76-9ea86ba9758e"
IPADDR="192.168.1.112"
NETMASK="255.255.255.0"
GATEWAY="192.168.1.1"
DNS1="8.8.8.8"

(3)修改centos_salve03虚拟机主机IP地址:

vim /etc/sysconfig/network-scripts/ifcfg-eth0
1
修改后内容如下:

DEVICE="eth0"
BOOTPROTO="static"
HWADDR="00:0c:29:1e:80:b1"
IPV6INIT="yes"
NM_CONTROLLED="yes"
ONBOOT="yes"
TYPE="Ethernet"
UUID="5315276c-db0d-4061-9c76-9ea86ba9758e"
IPADDR="192.168.1.113"
NETMASK="255.255.255.0"
GATEWAY="192.168.1.1"
DNS1="8.8.8.8"

/etc/sysconfig/network-scripts/ifcfg-eth0文件内容解析:

DEVICE=eth0 //指出设备名称
BOOTPROT=static //启动类型 dhcp|static,使用桥接模式,必须是static
HWADDR=00:06:5B:FE:DF:7C //硬件Mac地址
IPADDR=192.168.0.2 //IP地址
NETMASK=255.255.255.0 //子网掩码
NETWORK=192.168.0.0 //网络地址
GATEWAY=192.168.0.1 //网关地址
ONBOOT=yes //是否启动应用
TYPE=Ethernet //网络类型

设置完成后,使用

service network restart

命令重新启动网络,配置即可生效。

设置主机名与IP地址映射
(1)修改centos_salve01主机名与IP地址映射

vim /etc/hosts

设置内容如下:

127.0.0.1 slave01.example.com localhost localhost.localdomain localhost4 localhost4.localdomain4
slave01.example.com
192.168.1.111 slave01.example.com
192.168.1.112 slave02.example.com
192.168.1.113 slave03.example.com

(2)修改centos_salve02主机名与IP地址映射

vim /etc/hosts
1
设置内容如下:

127.0.0.1 slave02.example.com localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 slave02.example.com
192.168.1.111 slave01.example.com
192.168.1.112 slave02.example.com
192.168.1.113 slave03.example.com

(3)修改centos_salve03主机名与IP地址映射

vim /etc/hosts
1
设置内容如下:

127.0.0.1 slave03.example.com localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 slave03.example.com
192.168.1.111 slave01.example.com
192.168.1.112 slave02.example.com
192.168.1.113 slave03.example.com

修改主机DNS
采用下列命令设置各主机DNS(三台机器进行相同的设置)

vim /etc/resolv.conf
1
设置后的内容:

Generated by NetworkManager

search example.com
nameserver 8.8.8.8

8.8.8.8为Google提供的DNS服务器

网络连通测试
前面所有的配置完成后,重启centos_salve01、centos_salve02、centos_salve03使主机名设置生效,然后分别在三台机器上作如下测试命令:
下面只给出在centos_salve01虚拟机上的测试

[root@slave01 ~]# ping slave02.example.com
PING slave02.example.com (192.168.1.112) 56(84) bytes of data.
64 bytes from slave02.example.com (192.168.1.112): icmp_seq=1 ttl=64 time=0.417 ms
64 bytes from slave02.example.com (192.168.1.112): icmp_seq=2 ttl=64 time=0.355 ms
64 bytes from slave02.example.com (192.168.1.112): icmp_seq=3 ttl=64 time=0.363 ms
^C
— slave02.example.com ping statistics —
3 packets transmitted, 3 received, 0% packet loss, time 2719ms
rtt min/avg/max/mdev = 0.355/0.378/0.417/0.031 ms
[root@slave01 ~]# ping slave03.example.com
PING slave03.example.com (192.168.1.113) 56(84) bytes of data.
64 bytes from slave03.example.com (192.168.1.113): icmp_seq=1 ttl=64 time=0.386 ms
64 bytes from slave03.example.com (192.168.1.113): icmp_seq=2 ttl=64 time=0.281 ms
^C
— slave03.example.com ping statistics —
2 packets transmitted, 2 received, 0% packet loss, time 1799ms
rtt min/avg/max/mdev = 0.281/0.333/0.386/0.055 ms

测试外网的连通性(我在装的时候,8.8.8.8,已经被禁用….心中一万头cnm):

[root@slave01 ~]# ping www.baidu.com
ping: unknown host www.baidu.com
[root@slave01 ~]# ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
From 192.168.1.111 icmp_seq=2 Destination Host Unreachable
From 192.168.1.111 icmp_seq=3 Destination Host Unreachable
From 192.168.1.111 icmp_seq=4 Destination Host Unreachable
From 192.168.1.111 icmp_seq=6 Destination Host Unreachable
From 192.168.1.111 icmp_seq=7 Destination Host Unreachable
From 192.168.1.111 icmp_seq=8 Destination Host Unreachable

(4)SSH完密码登录

(1) OpenSSH安装

如果大家在配置时,ping 8.8.8.8能够ping通,则主机能够正常上网;如果不能上网,则将网络连接方式重新设置为NAT,并修改网络配置文件为dhcp方式。在保证网络连通的情况下执行下列命令:

yum install openssh-server
1

(2) 无密码登录实现

使用以下命令生成相应的密钥(三台机器进行相同的操作)

ssh-keygen -t rsa
1
执行过程一直回车即可

[root@slave01 ~]# ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
4e:2f:39:ed:f4:32:2e:a3:55:62:f5:8a:0d:c5:2c:16 [email protected]
The key’s randomart image is:

生成的文件分别为/root/.ssh/id_rsa(私钥)、/root/.ssh/id_rsa.pub(公钥)

完成后将公钥拷贝到要免登陆的机器上(三台可进行相同操作):

ssh-copy-id -i slave01.example.com
ssh-copy-id -i slave02.example.com
ssh-copy-id -i slave03.example.com

  1. Hadoop 2.4.1集群搭建
    集群搭建相关软件下载地址:

链接:http://pan.baidu.com/s/1sjIG3b3 密码:38gh
1
下载后将所有软件都放置在E盘的share目录下:

设置share文件夹为虚拟机的共享目录,如下图所示:

在linux系统中,采用

[root@slave01 /]# cd /mnt/hgfs/share
[root@slave01 share]# ls
1
2
命令可以切换到该目录下,如下图

Spark官方要求的JDK、Scala版本

Spark runs on Java 7+, Python 2.6+ and R 3.1+. For the Scala API, Spark 1.5.0 uses Scala 2.10. You will need to use a compatible Scala version (2.10.x).
1
(1)JDK 1.8 安装
在根目录下创建sparkLearning目前,后续所有相关软件都放置在该目录下,代码如下:

[root@slave01 /]# mkdir /sparkLearning
[root@slave01 /]# ls
bin etc lib media proc selinux sys var
boot hadoopLearning lib64 mnt root sparkLearning tmp
dev home lost+found opt sbin srv usr

将共享目录中的jdk安装包复制到/sparkLearning目录

[root@slave01 share]# cp /mnt/hgfs/share/jdk-8u40-linux-x64.gz /sparkLearning/
[root@slave01 share]# cd /sparkLearning/
//解压
[root@slave01 sparkLearning]# tar -zxvf jdk-8u40-linux-x64.gz

设置环境变量:

[root@slave01 sparkLearning]# vim /etc/profile
1
在文件最后添加:

export JAVA_HOME=/sparkLearning/jdk1.8.0_40
export PATH= J A V A H O M E / b i n : {JAVA_HOME}/bin: JAVAHOME/bin:PATH

测试配置是否成功:

//使修改后的配置生效
[root@slave01 sparkLearning]# source /etc/profile
//环境变量是否已经设置
[root@slave01 sparkLearning]# $JAVA_HOME
bash: /sparkLearning/jdk1.8.0_40: is a directory
//测试java是否安装配置成功
[root@slave01 sparkLearning]# java -version
java version “1.8.0_40”
Java™ SE Runtime Environment (build 1.8.0_40-b25)
Java HotSpot™ 64-Bit Server VM (build 25.40-b25, mixed mode)

(2)Scala 2.10.4 安装
//复制文件到sparkLearning目录下
[root@slave01 sparkLearning]# cp /mnt/hgfs/share/scala-2.10.4.tgz .
//解压
[root@slave01 sparkLearning]# tar -zxvf scala-2.10.4.tgz > /dev/null

[root@slave01 sparkLearning]# vim /etc/profile

将/etc/profile文件末尾内容修改如下:

export JAVA_HOME=/sparkLearning/jdk1.8.0_40
export SCALA_HOME=/sparkLearning/scala-2.10.4
export PATH= J A V A H O M E / b i n : {JAVA_HOME}/bin: JAVAHOME/bin:{SCALA_HOME}/bin:$PATH

测试Scala是否安装成功

[root@slave01 sparkLearning]# source /etc/profile
[root@slave01 sparkLearning]# $SCALA_HOME
bash: /sparkLearning/scala-2.10.4: is a directory
[root@slave01 sparkLearning]# scala -version
Scala code runner version 2.10.4 – Copyright 2002-2013, LAMP/EPFL

(3)Zookeeper-3.4.5 集群搭建
[root@slave01 sparkLearning]# cp /mnt/hgfs/share/zookeeper-3.4.5.tar.gz .
[root@slave01 sparkLearning]# tar -zxvf zookeeper-3.4.5.tar.gz > /dev/null

[root@slave01 sparkLearning]# cp zookeeper-3.4.5/conf/zoo_sample.cfg zoo.cfg
[root@slave01 sparkLearning]# vim zoo.cfg

修改dataDir为:

dataDir=/sparkLearning/zookeeper-3.4.5/zookeeper_data

在文件末尾添加如下内容:

server.1=slave01.example.com:2888:3888
server.2=slave02.example.com:2888:3888
server.3=slave03.example.com:2888:3888

//配置slave02.example.com上的myid
[root@slave01 /]# ssh salve02.example.com
[root@slave02 ~]# echo 2 > /sparkLearning/zookeeper-3.4.5/zookeeper_data/myid
[root@slave02 ~]# more /sparkLearning/zookeeper-3.4.5/zookeeper_data/myid
2
//配置slave03.example.com上的myid
[root@slave02 ~]# ssh slave03.example.com
Last login: Fri Sep 18 01:33:29 2015 from slave01.example.com
[root@slave03 ~]# echo 3 > /sparkLearning/zookeeper-3.4.5/zookeeper_data/myid
[root@slave03 ~]# more /sparkLearning/zookeeper-3.4.5/zookeeper_data/myid

如此便完成配置,下面对集群进行测试:

//在slave03.example.com主机上
[root@slave03 ~]# cd /sparkLearning/zookeeper-3.4.5/bin
[root@slave03 bin]# ls
README.txt zkCli.cmd zkEnv.cmd zkServer.cmd
zkCleanup.sh zkCli.sh zkEnv.sh zkServer.sh

//启动slave03.example.com上的ZooKeeper
[root@slave03 bin]# ./zkServer.sh start
JMX enabled by default
Using config: /sparkLearning/zookeeper-3.4.5/bin/…/conf/zoo.cfg
Starting zookeeper … STARTED
[root@slave03 bin]# ./zkServer.sh status
JMX enabled by default
Using config: /sparkLearning/zookeeper-3.4.5/bin/…/conf/zoo.cfg
Mode: leader

//在slave02.example.com主机上
[root@slave02 bin]# ./zkServer.sh start
JMX enabled by default
Using config: /sparkLearning/zookeeper-3.4.5/bin/…/conf/zoo.cfg
Starting zookeeper … STARTED
//查看zookeeper集群状态,如果Mode显示为follower或leader则表明配置成功
[root@slave02 bin]# ./zkServer.sh status
JMX enabled by default
Using config: /sparkLearning/zookeeper-3.4.5/bin/…/conf/zoo.cfg
Mode: follower

//在slave01.example.com主机上
[root@slave01 bin]# ./zkServer.sh start
JMX enabled by default
Using config: /sparkLearning/zookeeper-3.4.5/bin/…/conf/zoo.cfg
Starting zookeeper … STARTED
[root@slave01 bin]# ./zkServer.sh status
JMX enabled by default
Using config: /sparkLearning/zookeeper-3.4.5/bin/…/conf/zoo.cfg
Mode: follower

//在slave03.example.com主机上zookeeper状态
[root@slave03 bin]# ./zkServer.sh status
JMX enabled by default
Using config: /sparkLearning/zookeeper-3.4.5/bin/…/conf/zoo.cfg
Mode: leader
(4)Hadoop 2.4.1 集群搭建
(1)Hadoop 2.4.1基本目录浏览
root@slave01 bin]# cp /mnt/hgfs/share/hadoop-2.4.1.tar.gz /sparkLearning/
[root@slave01 bin]# cd /sparkLearning/
[root@slave01 sparkLearning]# tar -zxvf hadoop-2.4.1.tar.gz > /dev/null
[root@slave01 sparkLearning]# cd hadoop-2.4.1
[root@slave01 hadoop-2.4.1]# ls
bin include libexec NOTICE.txt sbin
etc lib LICENSE.txt README.txt share
cd
[root@slave01 hadoop-2.4.1]# cd etc/hadoop/
[root@slave01 hadoop]# ls
capacity-scheduler.xml hdfs-site.xml mapred-site.xml.template
configuration.xsl httpfs-env.sh slaves
container-executor.cfg httpfs-log4j.properties ssl-client.xml.example
core-site.xml httpfs-signature.secret ssl-server.xml.example
hadoop-env.cmd httpfs-site.xml yarn-env.cmd
hadoop-env.sh log4j.properties yarn-env.sh
hadoop-metrics2.properties mapred-env.cmd yarn-site.xml
hadoop-metrics.properties mapred-env.sh
hadoop-policy.xml mapred-queues.xml.template

(2)将Hadoop 2.4.1添加到环境变量
使用命令:vim /etc/profile 将环境变量信息修改如下:

export JAVA_HOME=/sparkLearning/jdk1.8.0_40
export SCALA_HOME=/sparkLearning/scala-2.10.4
export HADOOP_HOME=/sparkLearning/hadoop-2.4.1
export PATH= J A V A H O M E / b i n : {JAVA_HOME}/bin: JAVAHOME/bin:{SCALA_HOME}/bin: H A D O O P H O M E / b i n : {HADOOP_HOME}/bin: HADOOPHOME/bin:{HADOOP_HOME}/sbin:$PATH

(3)将Hadoop 2.4.1添加到环境变量
使用命令:vim hadoop-env.sh 将环境变量信息修改如下,在export JAVA_HOME修改为:

export JAVA_HOME=/sparkLearning/jdk1.8.0_40

(4)修改core-site.xml文件
利用vim core-site.xml命令,文件内容如下:

             
                        fs.defaultFS
                        hdfs://ns1
                    
                    
                    
                        hadoop.tmp.dir
                        /sparkLearning/hadoop-2.4.1/tmp
                    
                    
                    
                        ha.zookeeper.quorum
                        slave01.example.com:2181,slave02.example.com:2181,slave03.example.com:2181
                    

(5)修改hdfs-site.xml文件
vim hdfs-site.xml内容如下:


                
                
                    dfs.nameservices
                    ns1
                
                
                
                    dfs.ha.namenodes.ns1
                    nn1,nn2
                
                
                
                    dfs.namenode.rpc-address.ns1.nn1
                    slave01.example.com:9000
                
                
                
                    dfs.namenode.http-address.ns1.nn1
                    slave01.example.com:50070
                
                
                
                    dfs.namenode.rpc-address.ns1.nn2
                    slave02.example.com:9000
                
                
                
                    dfs.namenode.http-address.ns1.nn2
                    slave02.example.com:50070
                
                
                
                    dfs.namenode.shared.edits.dir
                    qjournal://slave01.example.com:8485;slave02.example.com:8485;slave03.example.com:8485/ns1
                
                
                
                    dfs.journalnode.edits.dir
                    /sparkLearning/hadoop-2.4.1/journal
                
                
                
                    dfs.ha.automatic-failover.enabled
                    true
                
                
                
                    dfs.client.failover.proxy.provider.ns1
                    org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider
                
                
                
                    dfs.ha.fencing.methods
                    
                        sshfence
                        shell(/bin/true)
                    
                
                
                
                    dfs.ha.fencing.ssh.private-key-files
                    /home/hadoop/.ssh/id_rsa
                
                
                
                    dfs.ha.fencing.ssh.connect-timeout
                    30000
                
            

(4)修改mapred-site.xml文件
[root@slave01 hadoop]# cp mapred-site.xml.template mapred-site.xml
1
vim mapred-site.xml修改文件内容如下:

 
                    
                    
                        mapreduce.framework.name
                        yarn
                    
     

(6)修改yarn-site.xml文件




                        
                        
                           yarn.resourcemanager.ha.enabled
                           true
                        
                        
                        
                           yarn.resourcemanager.cluster-id
                           SparkCluster
                        
                        
                        
                           yarn.resourcemanager.ha.rm-ids
                           rm1,rm2
                        
                        
                        
                           yarn.resourcemanager.hostname.rm1
                           slave01.example.com
                        
                        
                           yarn.resourcemanager.hostname.rm2
                           slave02.example.com
                        
                        
                        
                           yarn.resourcemanager.zk-address
                           
                           
                        
                        
                           yarn.nodemanager.aux-services
                           mapreduce_shuffle
                        
                

(7)修改slaves文件
slave01.example.com
slave02.example.com
slave03.example.com

(8)配置文件拷贝到其它服务器
//slave01.example.com上的配置文件拷贝到slave02.example.com
[root@slave01 hadoop]# scp -r /etc/profile slave02.example.com:/etc/profile
profile 100% 2027 2.0KB/s 00:00
[root@slave01 hadoop]# scp -r /sparkLearning/hadoop-2.4.1 slave02.example.com:/sparkLearning/

//slave01.example.com上的配置文件拷贝到slave03.example.com
[root@slave01 hadoop]# scp -r /etc/profile slave03.example.com:/etc/profile
profile 100% 2027 2.0KB/s 00:00
[root@slave01 hadoop]# scp -r /sparkLearning/hadoop-2.4.1 slave03.example.com:/sparkLearning/

(9)启动journalnode
//使用下列命令启动journalnode
[root@slave01 hadoop]# hadoop-daemons.sh start journalnode
slave02.example.com: starting journalnode, logging to /sparkLearning/hadoop-2.4.1/logs/hadoop-root-journalnode-slave02.example.com.out
slave03.example.com: starting journalnode, logging to /sparkLearning/hadoop-2.4.1/logs/hadoop-root-journalnode-slave03.example.com.out
slave01.example.com: starting journalnode, logging to /sparkLearning/hadoop-2.4.1/logs/hadoop-root-journalnode-slave01.example.com.out
//JournalNode进程存在,启动成功
[root@slave01 hadoop]# jps
11261 JournalNode
11295 Jps
[root@slave01 hadoop]# ssh slave02.example.com
Last login: Fri Sep 18 05:33:05 2015 from slave01.example.com
[root@slave02 ~]# jps
6598 JournalNode
6795 Jps
[root@slave02 ~]# ssh slave03.example.com
Last login: Fri Sep 18 05:33:26 2015 from slave02.example.com
[root@slave03 ~]# jps
5876 JournalNode
6047 Jps
[root@slave03 ~]#

(10)格式化HDFS
登录slave02.example.com服务器,执行下列命令

[root@slave02 ~]# hdfs namenode -format
//下面是执行结果
15/09/18 06:05:26 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = slave02.example.com/127.0.0.1
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 2.4.1
STARTUP_MSG: classpath = /sparkLearning/hadoop-2.4.1/etc/hadoop:/sparkLearning/hadoop-…省略无关信息…
STARTUP_MSG: build = http://svn.apache.org/repos/asf/hadoop/common -r 1604318; compiled by ‘jenkins’ on 2014-06-21T05:43Z
STARTUP_MSG: java = 1.8.0_40
…省略…
/sparkLearning/hadoop-2.4.1/tmp/dfs/name has been successfully formatted.
15/09/18 06:05:30 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
15/09/18 06:05:30 INFO util.ExitUtil: Exiting with status 0
15/09/18 06:05:30 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at slave02.example.com/127.0.0.1
************************************************************/

(11)格式化HDFS信息复制到slave03.example.com服务器
[root@slave02 ~]# scp -r /sparkLearning/hadoop-2.4.1/tmp/ slave01.example.com:/sparkLearning/hadoop-2.4.1/
fsimage_0000000000000000000.md5 100% 62 0.1KB/s 00:00
seen_txid 100% 2 0.0KB/s 00:00
fsimage_0000000000000000000 100% 350 0.3KB/s 00:00
VERSION 100% 200 0.2KB/s 00:00

(12)格式化ZK(在slave02.example.com上执行即可)
[root@slave02 hadoop]# hdfs zkfc -formatZK
Java HotSpot™ 64-Bit Server VM warning: You have loaded library /sparkLearning/hadoop-2.4.1/lib/native/libhadoop.so which might have disabled stack guard. The VM will try to fix the stack guard now.
…省略无关信息…
//执行成功
15/09/18 06:14:22 INFO ha.ActiveStandbyElector: Successfully created /hadoop-ha/ns1 in ZK.
15/09/18 06:14:22 INFO zookeeper.ZooKeeper: Session: 0x34fe096c3ca0000 closed
15/09/18 06:14:22 INFO zookeeper.ClientCnxn: EventThread shut down

(13)启动HDFS(在slave02.example.com上执行)
[root@slave02 hadoop]# start-dfs.sh
[root@slave02 hadoop]# jps
7714 QuorumPeerMain
6598 JournalNode
8295 DataNode
8202 NameNode
8716 Jps
8574 DFSZKFailoverController

[root@slave02 hadoop]# ssh slave01.example.com
Last login: Thu Aug 27 06:24:16 2015 from slave01.example.com
[root@slave01 ~]# jps
13744 DataNode
13681 NameNode
11862 QuorumPeerMain
14007 Jps
13943 DFSZKFailoverController
13851 JournalNode

[root@slave03 ~]# jps
5876 JournalNode
7652 Jps
7068 DataNode
6764 QuorumPeerMain

(14)启动YARN(在slave01.example.com上执行)
//slave01.example.com
[root@slave01 ~]# start-yarn.sh
…输出省略…
[root@slave01 ~]# jps
14528 Jps
13744 DataNode
13681 NameNode
14228 NodeManager
11862 QuorumPeerMain
13943 DFSZKFailoverController
14138 ResourceManager
13851 JournalNode

//slave02.example.com
[root@slave02 ~]# jps
11216 Jps
10656 JournalNode
7714 QuorumPeerMain
11010 NodeManager
10427 DataNode
10844 DFSZKFailoverController
10334 NameNode

//slave03.example.com
[root@slave03 ~]# jps
8610 JournalNode
8791 NodeManager
8503 DataNode
9001 Jps
6764 QuorumPeerMain

(15)查看hadoop运行管理界面
打开浏览器,输入http://slave01.example.com:8088/,可以得到hadoop集群管理界面:

输入http://slave01.example.com:50070 可以得到HDFS管理界面

至此Hadoop集群配置成功

  1. Spark 1.5.0 集群部署
    (1)将Spark添加到环境变量
    [root@slave01 hadoop]# cp /mnt/hgfs/share/spark-1.5.0-bin-hadoop2.4.tgz /sparkLearning/

[root@slave01 sparkLearning]# tar -zxvf spark-1.5.0-bin-hadoop2.4.tgz > /dev/null

[root@slave01 sparkLearning]# vim /etc/profile

将/etc/profile内容修改如下:

export JAVA_HOME=/sparkLearning/jdk1.8.0_40
export SCALA_HOME=/sparkLearning/scala-2.10.4
export HADOOP_HOME=/sparkLearning/hadoop-2.4.1
export SPARK_HOME=/sparkLearning/spark-1.5.0-bin-hadoop2.4
export PATH= J A V A H O M E / b i n : {JAVA_HOME}/bin: JAVAHOME/bin:{SCALA_HOME}/bin: H A D O O P H O M E / b i n : {HADOOP_HOME}/bin: HADOOPHOME/bin:{HADOOP_HOME}/sbin: S P A R K H O M E / b i n : {SPARK_HOME}/bin: SPARKHOME/bin:{SPARK_HOME}/sbin:$PATH

(2)将Spark添加到环境变量
[root@slave01 sparkLearning]# cd spark-1.5.0-bin-hadoop2.4/conf
[root@slave01 conf]# ls
docker.properties.template metrics.properties.template spark-env.sh.template
fairscheduler.xml.template slaves.template
log4j.properties.template spark-defaults.conf.template

//复制模板文件
[root@slave01 conf]# cp spark-env.sh.template spark-env.sh
[root@slave01 conf]# vim spark-env.sh

在spark-env.sh文件中添加如下内容:

export JAVA_HOME=/sparkLearning/jdk1.8.0_40
export SCALA_HOME=/sparkLearning/scala-2.10.4
export HADOOP_CONF_DIR=/sparkLearning/hadoop-2.4.1/etc/hadoop

[root@slave01 conf]# cp slaves.template slaves
[root@slave01 conf]# vim slaves

slaves文件内容如下:

A Spark Worker will be started on each of the machines listed below.

slave01.example.com
slave02.example.com
slave03.example.com

(3)将配置信息复制到其它服务器
[root@slave01 sparkLearning]# scp /etc/profile slave02.example.com:/etc/profile
profile 100% 2123 2.1KB/s 00:00
[root@slave01 sparkLearning]# scp /etc/profile slave03.example.com:/etc/profile
profile 100% 2123 2.1KB/s 00:00
[root@slave01 sparkLearning]# vim /etc/profile
[root@slave01 sparkLearning]# scp -r spark-1.5.0-bin-hadoop2.4 slave02.example.com:/sparkLearning/
…执行过程省略…
[root@slave01 sparkLearning]# scp -r spark-1.5.0-bin-hadoop2.4 slave03.example.com:/sparkLearning/
…执行过程省略…

(4)启动Spark集群
因为本人机器上装了Ambari Server,占用了8080端口,而Spark Master默认端是8080,因此将sbin/start-master.sh中的SPARK_MASTER_WEBUI_PORT修改为8888

if [ “$SPARK_MASTER_WEBUI_PORT” = “” ]; then
SPARK_MASTER_WEBUI_PORT=8888

[root@slave01 sbin]# ./start-all.sh
starting org.apache.spark.deploy.master.Master, logging to /sparkLearning/spark-1.5.0-bin-hadoop2.4/sbin/…/logs/spark-root-org.apache.spark.deploy.master.Master-1-slave01.example.com.out
slave03.example.com: starting org.apache.spark.deploy.worker.Worker, logging to /sparkLearning/spark-1.5.0-bin-hadoop2.4/sbin/…/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-slave03.example.com.out
slave02.example.com: starting org.apache.spark.deploy.worker.Worker, logging to /sparkLearning/spark-1.5.0-bin-hadoop2.4/sbin/…/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-slave02.example.com.out
slave01.example.com: starting org.apache.spark.deploy.worker.Worker, logging to /sparkLearning/spark-1.5.0-bin-hadoop2.4/sbin/…/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-slave01.example.com.out

[root@slave01 sbin]# jps
13744 DataNode
13681 NameNode
14228 NodeManager
16949 Master
11862 QuorumPeerMain
13943 DFSZKFailoverController
14138 ResourceManager
13851 JournalNode
17179 Jps
17087 Worker

浏览器中输入slave01.example.com:8888

但是在启动过程中出现了错误,查看日志文件

[root@slave02 logs]# more spark-root-org.apache.spark.deploy.worker.Worker-1-slave02.example.com.out
1
2
日志内容中包括下列错误:

akka.actor.ActorNotFound: Actor not found for: ActorSelection[Anchor(akka.tcp://
[email protected]:7077/), Path(/user/Master)]
at akka.actor.ActorSelectionKaTeX parse error: Can't use function '$' in math mode at position 8: anonfun$̲resolveOne$1.ap…anonfun$resolveOne 1. a p p l y ( A c t o r S e l e c t i o n . s c a l a : 63 ) a t s c a l a . c o n c u r r e n t . i m p l . C a l l b a c k R u n n a b l e . r u n ( P r o m i s e . s c a l a : 32 ) a t a k k a . d i s p a t c h . B a t c h i n g E x e c u t o r 1.apply(ActorSelection. scala:63) at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32) at akka.dispatch.BatchingExecutor 1.apply(ActorSelection.scala:63)atscala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)atakka.dispatch.BatchingExecutorAbstractBatch.processBatch(BatchingExe
cutor.scala:55)
at akka.dispatch.BatchingExecutor B a t c h . r u n ( B a t c h i n g E x e c u t o r . s c a l a : 73 ) a t a k k a . d i s p a t c h . E x e c u t i o n C o n t e x t s Batch.run(BatchingExecutor.scala:73) at akka.dispatch.ExecutionContexts Batch.run(BatchingExecutor.scala:73)atakka.dispatch.ExecutionContextssameThreadExecutionContext . u n b a t c h e d E x e c u t e ( F u t u r e . s c a l a : 74 ) a t a k k a . d i s p a t c h . B a t c h i n g E x e c u t o r .unbatched Execute(Future.scala:74) at akka.dispatch.BatchingExecutor .unbatchedExecute(Future.scala:74)atakka.dispatch.BatchingExecutorclass.execute(BatchingExecutor.scala:1
20)
at akka.dispatch.ExecutionContexts s a m e T h r e a d E x e c u t i o n C o n t e x t sameThreadExecutionContext sameThreadExecutionContext.execute(F
uture.scala:73)
at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala
:40)
at scala.concurrent.impl.Promise D e f a u l t P r o m i s e . t r y C o m p l e t e ( P r o m i s e . s c a l a : 248 ) a t a k k a . p a t t e r n . P r o m i s e A c t o r R e f . DefaultPromise.tryComplete(Promise.scal a:248) at akka.pattern.PromiseActorRef. DefaultPromise.tryComplete(Promise.scala:248)atakka.pattern.PromiseActorRef.bang(AskSupport.scala:266)
at akka.actor.EmptyLocalActorRef.specialHandle(ActorRef.scala:533)
at akka.actor.DeadLetterActorRef.specialHandle(ActorRef.scala:569)
…省略…

没找到具体原因,在ubuntu 10.04服务器上进行相同的配置,集群却搭建成功

(5)测试Spark集群
采用下列命上传spark-1.5.0-bin-hadoop2.4目录下的README.md文件到相应的根目录。

hadoop dfs -put README.md
进入/spark-1.5.0-bin-hadoop2.4/bin目录,启动./spark-shell,如下图所示:

执行REDME.md文件的wordcount操作:

scala> val textCount = sc.textFile(“README.md”).filter(line => line.contains(“Spark”)).count()
至此,Spark 1.5集群搭建成功

你可能感兴趣的:(Spark)