动作识别——Multi-Model Domain Adaptation for Fine-Grained Action Recognition——CVPR2020 oral

动作识别——Multi-Model Domain Adaptation for Fine-Grained Action Recognition——CVPR2020 oral_第1张图片

Abstract

Fine-grained action recognition datasets exhibit environmental bias, where multiple video sequences are captured from a limited number of environments. Multi-modal nature of video(视频的多模态性),提出的方法一个是multi-modal self-supervision,还有一个是adversarial training per modality

Introduction

fine-grained action recognition,
动作识别——Multi-Model Domain Adaptation for Fine-Grained Action Recognition——CVPR2020 oral_第2张图片
动作识别——Multi-Model Domain Adaptation for Fine-Grained Action Recognition——CVPR2020 oral_第3张图片
Few works have attempted deep UDA for video data《Temporal attentive alignment for large-scale video domain adaptation, ICCV2019》《Deep domain adaptation in action space, BMVC2018》

Conclusion

modality指的是两种信息(optical flow和RGB信息),future work包含audio

Key points: Motivation很好; 提出的新数据集

你可能感兴趣的:(动作识别,博士科研,计算机视觉)