离散型变量的编码方式——one-hot与哑变量(dummy variable)

我们在用模型去解决机器学习问题的时候,要提前进行“特征工程”。而特征工程中很重要的就是对特征的预处理。

当你使用的是logistic回归这样的模型的时候,模型要求所有特征都应该是数值型变量,即连续的。但我们生活中常常遇到类别型变量(categorical variable),例如著名的Kaggle泰坦尼克生还预测这个比赛中,乘客从哪里上船(Embarked)这个变量就是类别型变量。这三个登船点两两之间的相关度应该是一样的,即S市和C市,与S市与Q市的相关度应该一样,这样就意味着如果我给Embarked变量用Embarked=1来表示乘客在S市上船,Embarked=2表示乘客在Q市上船,Embarked=3表示乘客在C市上船,这样就会认为S与Q的“距离”比S和C之间的距离更近,所以这样编码是不合理的。

 

正因如此,我们引入了离散型变量的编码方式——one-hot与哑变量

one-hot encoding

  one-hot的基本思想:将离散型特征的每一种取值都看成一种状态,若你的这一特征中有N个不相同的取值,那么我们就可以将该特征抽象成N种不同的状态,one-hot编码保证了每一个取值只会使得一种状态处于“激活态”,也就是说这N种状态中只有一个状态位值为1,其他状态位都是0。举个例子,假设我们以学历为例,我们想要研究的类别为小学、中学、大学、硕士、博士五种类别,我们使用one-hot对其编码就会得到:

       

dummy encoding

  哑变量编码直观的解释就是任意的将一个状态位去除。还是拿上面的例子来说,我们用4个状态位就足够反应上述5个类别的信息,也就是我们仅仅使用前四个状态位 [0,0,0,0] 就可以表达博士了。只是因为对于一个我们研究的样本,他已不是小学生、也不是中学生、也不是大学生、又不是研究生,那么我们就可以默认他是博士,是不是。(额,当然他现实生活也可能上幼儿园,但是我们统计的样本中他并不是,^-^)。所以,我们用哑变量编码可以将上述5类表示成:

      

one-hot编码和dummy编码:区别与联系

  通过上面的例子,我们可以看出它们的“思想路线”是相同的,只是哑变量编码觉得one-hot编码太罗嗦了(一些很明显的事实还说的这么清楚),所以它就很那么很明显的东西省去了。这种简化不能说到底好不好,这要看使用的场景。下面我们以一个例子来说明:

  假设我们现在获得了一个模型,这里自变量满足(因为特征是one-hot获得的,所有只有一个状态位为1,其他都为了0,所以它们加和总是等于1),故我们可以用表示第三个特征,将其带入模型中,得到:

     

       这时,我们就惊奇的发现这两个参数是等价的!那么我们模型的唯一性就成了一个待解决的问题——难道我们用one-hot编码得到的特征是不唯一的?这肯定是不被允许的。这个问题这么解决呢?有三种方法:

(1)使用正则化手段,将参数的选择上加一个限制,就是选择参数元素值小的那个作为最终参数,这样我们得到的参数就唯一了,模型也就稳定了。

(2)把偏置项去掉,这时我们发现也可以解决同一个模型参数等价的问题。

    

  因为有了bias项,所以和我们去掉bias项的模型是完全不同的模型,不存在参数等价的问题。

(3)再加上bias项的前提下,使用哑变量编码代替one-hot编码,这时去除了,也就不存在之前一种特征可以用其他特征表示的问题了。

总结:我们使用one-hot编码时,通常我们的模型不加bias项 或者 加上bias项然后使用正则化手段去约束参数;当我们使用哑变量编码时,通常我们的模型都会加bias项,因为不加bias项会导致固有属性的丢失

 

参考:https://www.cnblogs.com/lianyingteng/p/7792693.html

你可能感兴趣的:(机器学习,Python,tricks,特征工程)