- 《BERT基础教程:Transformer大模型实战》读书笔记
johnny233
读书笔记人工智能
概念BERT,BidirectionalEncoderRepresentationsfromTransformers,多Transformer的双向编码器表示法。RNN,recurrentneuralnetwork,循环神经网络。LSTM,longshort-termmemory,长短期记忆网络。NLI,Naturallanguageinference,自然语言推理。知识蒸馏(knowledged
- 英伟达如何通过剪枝和蒸馏技术让Llama 3.1模型“瘦身“?
蒜鸭
人工智能算法机器学习
英伟达如何通过剪枝和蒸馏技术让Llama3.1模型"瘦身"?大家好,我是蒜鸭。今天我们来聊聊英伟达最近在大语言模型优化方面的一项有趣研究。随着Meta发布Llama3.1系列模型,如何在保持模型性能的同时缩小其体积成为了业界关注的焦点。英伟达研究团队通过结构化权重剪枝和知识蒸馏技术,成功将Llama3.18B模型压缩为4B参数的小型语言模型,并取得了不俗的效果。让我们一起来深入探讨这项技术的原理和
- 【机器学习】机器学习与大模型在人工智能领域的融合应用与性能优化新探索
E绵绵
Everything人工智能机器学习大模型pythonAIGC应用科技
文章目录引言机器学习与大模型的基本概念机器学习概述监督学习无监督学习强化学习大模型概述GPT-3BERTResNetTransformer机器学习与大模型的融合应用自然语言处理文本生成文本分类机器翻译图像识别自动驾驶医学影像分析语音识别智能助手语音转文字大模型性能优化的新探索模型压缩权重剪枝量化知识蒸馏分布式训练数据并行模型并行异步训练高效推理模型裁剪缓存机制专用硬件未来展望跨领域应用智能化系统人
- Transformer视频理解学习的笔记
LinlyZhai
transformer学习笔记
今天复习了Transformer,ViT,学了SwinTransformer,还有观看了B站视频理解沐神系列串讲视频上(24.2.26未看完,明天接着看)这里面更多论文见:https://github.com/mli/paper-reading/B站视频理解沐神系列串讲视频下(明天接着看)上面这张图中的知识蒸馏,可以回头看一下上面这个github网址论文:VideoTransformers:ASu
- 大模型量化技术原理-LLM.int8()、GPTQ
吃果冻不吐果冻皮
动手学大模型人工智能
近年来,随着Transformer、MOE架构的提出,使得深度学习模型轻松突破上万亿规模参数,从而导致模型变得越来越大,因此,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。模型压缩主要分为如下几类:剪枝(Pruning)知识蒸馏(KnowledgeDistillation)量化之前也写过一些文章涉及大模型量化相关的内容。基于LLaMA-7B/Bloomz-7B1-mt复现开
- 知识蒸馏实战代码教学一(原理部分)
业余小程序猿
深度学习机器学习人工智能知识蒸馏
一、知识蒸馏的来源知识蒸馏(KnowledgeDistillation)源自于一篇由Hinton等人于2015年提出的论文《DistillingtheKnowledgeinaNeuralNetwork》。这个方法旨在将一个大型、复杂的模型的知识(通常称为教师模型)转移到一个小型、简化的模型(通常称为学生模型)中。通过这种方式,学生模型可以获得与教师模型相似的性能,同时具有更小的模型体积和计算资源需
- 知识蒸馏实战代码教学二(代码实战部分)
业余小程序猿
深度学习人工智能机器学习知识蒸馏
一、上章原理回顾具体过程:(1)首先我们要先训练出较大模型既teacher模型。(在图中没有出现)(2)再对teacher模型进行蒸馏,此时我们已经有一个训练好的teacher模型,所以我们能很容易知道teacher模型输入特征x之后,预测出来的结果teacher_preds标签。(3)此时,求到老师预测结果之后,我们需要求解学生在训练过程中的每一次结果student_preds标签。(4)先求h
- 超好用!——知识蒸馏中即插即用的对抗性调度器以及调整向量Vector
时光诺言
机器学习人工智能深度学习python
一.前言本设计思路来源于论文《DynamicData-FreeKnowledgeDistillationbyEasy-to-HardLearningStrategy》。1.1原理总体架构图如下。在常规的知识蒸馏中,一般不会考虑知识的难度先后,按照我们人类的思维,肯定是先学习容易的再学习难一点的知识(总不能小学就学高数吧哈哈)。一个模型的理想状态也应该如此。在本论文的设计图中,可以看到Generat
- 【论文解读】Document-Level Relation Extraction with Adaptive Focal Loss and Knowledge Distillation
Queen_sy
深度学习人工智能
目录1Introduction1Docre任务比句子级任务更具挑战性:2现有的Docre方法:3现有的Docre方法存在三个局限性2Methodology1使用轴向注意力模块作为特征提取器:2第二,提出适应性焦距损失3第三用知识蒸馏相关知识类别不平衡问题长尾类分布交叉熵损失和二元交叉熵损失二元交叉熵损失定义为知识蒸馏全文翻译https://baijiahao.baidu.com/s?id=1737
- 知识蒸馏之Knowledge Distillation: A Survey
Diros1g
知识蒸馏
InternationalJournalofComputerVision2021JianpingGou1·BaoshengYu1·StephenJ.Maybank2·DachengTao11UBTECHSydneyAICentre,SchoolofComputerScience,FacultyofEngineering,TheUniversityofSydney,Darlington,NSW200
- 知识蒸馏综述---代码整理
qq_41920323
模型部署python知识蒸馏
本文尽可能简单解释蒸馏用到的策略,并提供了实现源码。1、KD:KnowledgeDistillation链接:https://arxiv.org/pdf/1503.02531.pd3f发表:NIPS14最经典的,也是明确提出知识蒸馏概念的工作,通过使用带温度的softmax函数来软化教师网络的逻辑层输出作为学生网络的监督信息,使用KLdivergence来衡量学生网络与教师网络的差异,具体流程如下
- 知识蒸馏(paper翻译)
蓝羽飞鸟
DeepLearning人工智能深度学习
paper:DistillingtheKnowledgeinaNeuralNetwork摘要:提高几乎所有机器学习算法性能的一个非常简单的方法是在相同的数据上训练许多不同的模型,然后对它们的预测进行平均[3]。不幸的是,使用整个模型集合进行预测非常麻烦,并且计算成本可能太高,无法部署到大量用户,尤其是在单个模型是大型神经网络的情况下。Caruana和他的合作者[1]已经证明,可以将集成中的知识压缩
- 第二十九周:文献阅读笔记(ResMLP)+ pytorch学习(Resnet代码实现)
@默然
笔记pytorch学习人工智能python深度学习机器学习
第二十九周:文献阅读笔记(ResMLP)摘要Abstract1.ResMLP1.1文献摘要1.2文献引言1.3ResMLP方法1.3.1整体流程1.3.2残差多感知机层1.4实验1.4.1数据集1.4.2超参数设置1.4.3主要结果1.4.4监督设置1.4.5自监督设置1.4.5知识蒸馏设置1.5ResMLP的创新点2.pytorch学习(ResNet代码实现)2.1数据集2.2文件结构2.3下载
- vit细粒度图像分类(三)TRS-DeiT 学习笔记
无妄无望
学习笔记人工智能深度学习分类神经网络
1.摘要细粒度图像分类任务由于自身存在的细微的类间差别和巨大的类内差别使其极具挑战性,为了更好地学习细粒度图像的潜在特征,该算法将知识蒸馏引入到细粒度图像分类任务中,提出基于知识蒸馏与目标区域选取的细粒度图像分类方法(TRS-DeiT),能使其兼具CNN模型和Transformer模型的各自优点。此外,TRS-DeiT的新型目标区域选取模块能够获取最具区分性的区域;为了区分任务中的易混淆类,引入对
- 【Image captioning】论文阅读七—Efficient Image Captioning for Edge Devices_AAAI2023
安静到无声
手把手实现Imagecaptioning论文阅读
中文标题:面向边缘设备的高效图像描述(EfficientImageCaptioningforEdgeDevices)文章目录1.引言2.相关工作3.方法3.1ModelArchitecture(模型结构)3.2ModelTraining(模型训练)3.3KnowledgeDistillation(知识蒸馏)4.实验4.1数据集和评价指标4.2实施细节:4.3消融实验
- 和GPT讨论知识蒸馏的基本概念
Mighty_Crane
gpt人工智能
User帮我解释一下知识蒸馏、教师学生网络、逆向蒸馏等概念ChatGPT知识蒸馏(KnowledgeDistillation)是一种模型压缩技术。在这个过程中,一个大型、复杂的模型(通常称为“教师”模型)被用来训练一个更小、更简单的模型(称为“学生”模型)。学生模型不仅学习从数据到输出的映射,还学习模仿教师模型的行为,这通常能提高其性能。逆向蒸馏(ReverseDistillation)是其中的一
- Knowledge Distilling,知识蒸馏
FeynmanMa
Distillingtheknowledgeinaneuralnetwork1.Motivationknowledge_distilling_title.jpg论文作者比较大名鼎鼎了。Motivation一部分来自模型压缩[2],一部分源自作者认为大部分机器学习采用ensemble方法或者学习一个很大的模型来取得比较好的结果,但会给实际应用预测带来很大的压力,而且实际上模型之间也是有信息冗余的。希
- AI芯片:神经网络研发加速器、神经网络压缩简化、通用芯片 CPU 加速、专用芯片 GPU 加速
Debroon
#深度学习人工智能神经网络深度学习
AI芯片:神经网络研发加速器、神经网络压缩简化、通用芯片CPU加速、专用芯片GPU加速神经网络研发加速器神经网络编译器各自实现的神经网络编译器神经网络加速与压缩(算法层面)知识蒸馏低秩分解轻量化网络剪枝量化通用芯片CPU加速x86加速arm加速卷积优化神经网络加速库专用芯片GPU加速dsp加速faga加速npu加速K210人工智能微控制器神经网络加速库:Vulkan图形计算神经网络研发加速器神经网
- 《FITNETS: HINTS FOR THIN DEEP NETS》论文整理
LionelZhao
知识蒸馏论文阅读人工智能神经网络深度学习
目录零、前言一、Fitnet的目的及适用范围1、目的:2、适用范围:3、背景及创新点:二、Hint-BasedTraining思想1、hint层与guided层:2、核心思想:三、Fitnet训练过程及效果1、FItnet训练过程可以分为三个阶段:2、需要注意的问题:3、具体流程:4、损失函数:(1)预训练阶段:(2)知识蒸馏阶段:5、训练效果:四、Q&A1、小模型模仿大模型中间层的输出featu
- YOLO蒸馏原理篇之---MGD、CWD蒸馏
qq_41920323
模型部署MGDCWD特征蒸馏
一、MGD蒸馏论文地址:https://arxiv.org/abs/2205.01529论文翻译:https://mp.weixin.qq.com/s/FSvo3ns2maTpiTTWsE91kQ1.1摘要知识蒸馏已成功应用于各种任务。当前的蒸馏算法通常通过模仿教师的输出来提高学生的表现。本文表明,教师还可以通过指导学生的特征恢复来提高学生的表征能力。从这个角度来看,我们提出了掩蔽生成蒸馏(MGD
- 深度学习模型压缩方法:知识蒸馏方法总结
qq_41920323
模型部署深度学习人工智能
本文将介绍深度学习模型压缩方法中的知识蒸馏,内容从知识蒸馏简介、知识的种类、蒸馏机制、师生网络结构、蒸馏算法以及蒸馏方法等六部部分展开。一、知识蒸馏简介知识蒸馏是指用教师模型来指导学生模型训练,通过蒸馏的方式让学生模型学习到教师模型的知识。在模型压缩中,教师模型是一个提前训练好的复杂模型,而学生模型则是一个规模较小的模型。如下图所示,由训练好的教师模型,在相同的数据下,通过将教师网络对该样本的预测
- 使用知识蒸馏提升模型推理性能
之乎者也·
AI(人工智能)内容分享NLP(自然语言处理)内容分享深度学习人工智能
目录知识蒸馏介绍LogitsTemperature理论介绍实验代码实验结果知识蒸馏介绍首先,我们先简单地了解下知识蒸馏概念[2]。通常,大模型可能是一个复杂的网络或多个网络的组合,表现出优越的效果和泛化能力。而小模型由于其较小的规模,其表达能力可能受到限制。为了提高小模型的效果,我们可以借助大模型所学习到的知识来指导小模型的训练。这样,小模型在参数数量明显减少的情况下,也能够达到与大模型相似的效果
- 深度学习中的知识蒸馏
Algorithm_Engineer_
人工智能深度学习人工智能
一.概念知识蒸馏(KnowledgeDistillation)是一种深度学习中的模型压缩技术,旨在通过从一个教师模型(teachermodel)向一个学生模型(studentmodel)传递知识来减小模型的规模,同时保持性能。这个过程涉及到从教师模型的软标签(softlabels)或者特征中提取知识,然后用这些知识来训练一个更小的学生模型。简单了解一些知识蒸馏的一般步骤和关键概念:教师模型(Tea
- 【多模态】ALBEF
不牌不改
【NLP&CV】人工智能计算机视觉深度学习机器学习python算法transformer
ALBEF论文信息标题:AlignbeforeFuse:VisionandLanguageRepresentationLearningwithMomentumDistillation作者:JunnanLi(SalesforceResearch)期刊:NeurIPS2021发布时间与更新时间:2021.07.162021.10.07主题:多模态、预训练、图像、文本、对比学习、知识蒸馏、动量模型arX
- 【AI】一文读懂大模型套壳——神仙打架?软饭硬吃?
giszz
人工智能随笔人工智能
目录一、套壳的风波此起彼伏二、到底什么是大模型的壳2.1大模型的3部分,壳指的是哪里大模型的内核预训练(Pre-training)调优(Fine-tuning)2.2内核的发展历程和万流归宗2.3套壳不是借壳三、软饭硬吃,套壳真的不行吗四、神仙打架,百姓吃瓜4.1自研的佼佼者4.2模仿也不丢人4.3读书人偷书不算偷模仿学习(ImitationLearning)知识蒸馏(KnowledgeDisti
- 知识蒸馏 Knowledge Distillation(在tinybert的应用)
不当菜鸡的程序媛
学习记录人工智能
蒸馏(KnowledgeDistillation)是一种模型压缩技术,通常用于将大型模型的知识转移给小型模型,以便在保持性能的同时减小模型的体积和计算开销。这个过程涉及到使用一个大型、复杂的模型(通常称为教师模型)生成的软标签(概率分布),来训练一个小型模型(通常称为学生模型)。具体而言,对于分类问题,教师模型生成的概率分布可以看作是对每个类别的软标签,而学生模型通过学习这些软标签来进行训练。这种
- yolov8知识蒸馏代码详解:支持logit和feature-based蒸馏
@BangBang
模型轻量化yolov8代码详解知识蒸馏
文章目录1.知识蒸馏理论2.yolov8蒸馏代码应用2.1环境配置2.2训练模型(1)训练教师模型(2)训练学生模型baseline(3)蒸馏训练3.知识蒸馏代码详解3.1蒸馏参数设置3.2蒸馏损失代码讲解3.2.1Featurebasedloss3.2.1Logitloss3.3获取蒸馏的featuremap及channels
- AI的智慧精华:解锁知识蒸馏的秘密
散一世繁华,颠半世琉璃
人工智能
1.定义化学蒸馏是一种物质分离的方法,通过加热物质混合物,使其其中一种或多种成分的沸点低于其他成分的沸点,从而使其蒸发,然后通过冷凝使其凝结,最终得到纯净的成分。蒸馏通常用于分离液体混合物中的组分。在蒸馏过程中,混合物被加热,使其中沸点较低的成分先蒸发,然后通过冷凝器冷却并凝结为液体。凝结后的液体称为蒸馏液或馏出液。沸点较高的成分则留在容器中,称为残渣。而知识蒸馏就是把一个大的模型,称之为教师模型
- Knowledge Distillation from A Stronger Teacher(NeurIPS 2022)论文解读
00000cj
知识蒸馏-分类深度学习人工智能知识蒸馏
paper:KnowledgeDistillationfromAStrongerTeacherofficialimplementation:https://github.com/hunto/dist_kd前言知识蒸馏通过将教师的知识传递给学生来增强学生模型的性能,我们自然会想到,是否教师的性能越强,蒸馏后学生的性能也会进一步提升?为了了解如何成为一个更强的教师模型以及它们对KD的影响,作者系统地研
- yolov5知识蒸馏
cv-daily
YOLO深度学习人工智能
参考代码:https://github.com/Adlik/yolov5https://cloud.tencent.com/developer/article/2160509yolov5间的模型蒸馏,相同结构的。配置参数parser.add_argument('--t_weights',type=str,default='./weights/yolov5s.pt',help='initialtea
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不