本文介绍了如何将用户自定义的功能模块与 IBM SPSS Statistics 进行集成, 如何利用 Statistics 提供的统计分析方法对功能模块的输入数据进行预处理,并对集成结果进行分析与演示。
近年来,商业分析(Business Analytics,BA)软件逐渐成为企业增强洞察力的利器。其中,IBM SPSS Statistics 是统计分析领域中久享盛名的应用软件。企业在实际运营中,已根据不同的业务需求,开发或购买了满足自身需求的商业数据整合方案,并期待与 Statistics 进行集成,以便更高效、准确的分析数据,提取数据中隐含的信息。
Statistics 不仅为用户提供了丰富的统计算法来帮助用户分析数据,而且也提供了非常灵活的编程接口,供外部用户将自定义的功能模块与 Statistics 集成。用户可以通过自定义模块对 Statistics 进行功能扩展。借助 Statistics,用户自定义模块可以获得更加完整、有意义的输入数据。
Statistics 16.0(及以上)为用户提供了的可编程插件(Programmability plug-ins)包括 Python plug-in、R plug-in 和 Microsoft .NET plug-in。其中,Python 语法简洁而清晰、具有丰富强大的类库,并且其能够很轻松的与其他语言实现的模块集成在一起。所以,本文将使用 Python 功能模块作为演示。
Statistics 在编程插件的基础上提供了 Extension Command 机制使用户能够以 Statistics 内部语法命令(syntax command) 的形式来包装使用编程插件开发出来的功能模块。Customer Dialog 为 Extension Command 提供了相应的用户界面。
Customer Dialog 允许用户创建符合 Statistics 界面风格的对话窗口,以及创建自定义的 Statistics 内置统计程序。对话窗口作为该统计程序的用户界面,可接受并传递基于用户输入的参数,并调用相应的内置统计程序。通过 Customer Dialog Builder,用户可以
SPSS Statistics 具备强大的数据处理和分析功能,除了提供友好、灵活的 UI 操作界面外,Statistics 为其所有的功能设计了相应的命令,即 Statistics 的语法 Syntax。除此之外,Syntax 具有高级编程的功能,可以完成比 UI 所提供的功能更为复杂的数据分析工作。SPSS Statistics 内核是基于命令驱动的,Syntax 是其灵魂。用户在 UI 界面的所有操作,均会被转换成 Syntax 命令传递至内核执行。详见下图。
Python plug-in 和 Statistics 产品的交互方式很灵活。用户既可以在自定义的 Python 代码中引入 SPSS 模块,运用 Statistics 完成数据的读取、处理、分析、输出任务,也可以在 Syntax 中直接加入 Python 代码块(BEGIN PROGRAM PYTHON-END PROGRAM)来控制 Syntax 工作流。本文采用了后一种方式。如:
使用 Python Plug-in 的好处是,可以动态的创建 string 字符串以及 Syntax 命令。
回页首
由上节讨论可知,我们可以利用 Statistics 中的 Python Plug-in 对自定义 Python 模块进行集成,包括:利用 Customer Dialog 设计满足用户习惯的 UI 交互界面;编写内置统计程序;与 Statistics 进行集成。
本文设计的 Python 功能模块实现了一种客户分群方法。其依据大量的客户属性数据和消费数据,将客户分组,属于同一组的客户具有极大的相似性,可以采用相同的商业策略;不同组的客户具有极大的差异性,保证组与组之间的差别最大化,以便采取不同的商业策略,获得最大的商业利润。
本节将讨论 UI 界面的布局以及 UI 参数传递。在设计 UI 界面前,我们首先应该明确,Python 功能模块所需的输入参数,这些参数将出现在 UI 界面上。同时,若模块功能较为复杂,可以添加子对话过程实现特定的功能。该功能模块的输入包括:数据文件、控制文件以及最大分组数。输出为客户分群结果文件,包括用户的基本信息以及所属的群组号。子对话的功能为客户分群结果上传至数据库。
运行 Utilities -> Customer Dialog Builder,出现 Customer Dialog 编辑界面。通过拖拽控件的方式,用户可以快捷地对界面进行编辑,并且指定相应控件的属性。各属性含义参见 Statistics 教程。
图中,该 dialog 有 5 个控件。Item 1 为该对话窗口的标题,将显示在该窗口的标题栏中;Item 2、Item 3 以及 Item 4 用于用户输入 Python 功能模块参数 , 分别为控制文件路径,数据文件路径以及最大分组数;Item 5 为该对话窗口的子对话窗口,用于实现特定子功能。本文中设计的子功能是将 Python 模块的执行结果上传至数据库中。Item 5 的 UI 界面如下图。
图 4 中 Item 6 为子对话框的标题,Item 7、Item8 以及 Item9 用于输入上传数据库所需参数,分别为 DSN 名称、数据库名称,以及待建的数据表名。
以 Item 2 为例,我们演示如何传递参数。下图为 Item 2 的属性。
其中,属性“Identifier”用于传递参数,如图中的“control_file_path”。它记录用户的输入值,在 Python 程序中,以“%%”标记对读出该输入值,传递给 Syntax 和 Python 程序。传递过程如下图所示。
编辑好 UI 界面后,将其保存为 customer dialog package file(.spd) 文件,本文中为 CustomerClustering.spd。使用“Preview”功能,对界面进行预览。
图 7 红框部分是子对话窗口按钮,用户点击该按钮将出现子对话框,如下图所示。
在设计子对话窗口控件属性时,我们为“DSN”以及“Database Name”设置了默认值“TEST”。
本文涉及到的自定义 Python 模块主要实现两类功能。一类是客户分群,是用嵌入了 Python 程序的 Syntax 实现 (CustomerClustering.sps) ;另一类是分群结果上传至数据库,是用 Python 脚本实现 (UploadtoDatabase.py)。我们利用 Customer Dialog 里的 Syntax Template 将 UI 参数与 Python 程序进行关联。
在集成该功能时,本文选择了 Statistics 提供的“INSERT”命令。该命令用法详见 Statistics 教程。我们通过用户从 UI 界面的输入 control_file_path、input_file_path 获得待操作的数据集,通过 max_clusters_ui 获取到命令文件运行所需参数,并将该参数赋值给变量 max_clusters。max_clusters 为命令文件中定义的全局变量 , 以实现参数传递。最后,我们利用 spss.Submit( ) 函数执行该命令。至此,内置统计程序在运行时,可以调用指定的命令文件,并将运行时参数传递给该命令文件。具体实现如下图所示。
出于安全性考虑,我们将 UploadtoDatabase.py 文件编辑为二进制的 UploadtoDatabase.pyc 文件以避免暴露源代码,所以图中“import UploadtoDatabase”所引入的实际为 .pyc 文件。这里,在引入 .pyc 文件时,需要指定所引入文件的路径,即“sys.path.append('C:\\Integration\\PythonScript\\')”所示。dsn,db_name 和 db_tablename 为用户通过 UI 界面传递的数据库信息。调用方法如下。
图中 UploadtoDatabase 中 run 函数的声明和实现方式如下:
我们可以将 Python 功能模块的运行结果保存为指定格式文件,或上传至数据库。使用 Syntax “SAVE TRANSLATE OUTFILE”命令可将运行结果保存为指定格式的文件。其中,数据集 RESULT 为 Python 功能模块的输出数据集,output_result_file 为待保存文件的文件名。我们首先设置操作的主数据集是 RESULT,然后使用 spss.Submit( ) 函数执行保存输出结果命令,就可以将 RESULT 数据集保存为指定格式的文件。具体命令如下。
本例中,我们将 RESULT 数据集分别保存为 .csv 文件以及 .sav 文件。除此之外,我们还可以利用 ODBC 连接将输出数据集 RESULT 上传至数据库,为此,我们需要在系统中设定 DSN(Data Source Name)。DSN 为 ODBC 指定了某一数据源和相对应的 ODBC 驱动程序。接着,使用 Syntax “SAVE TRANSLATE ”命令实现上传数据库功能,具体命令如下。
begin program python. import spss import spssaux DSN = r"%%DSN%%" db_name=r"%%DBName%%" table_name=r"%%TableName%%" spss.Submit("dataset active RESULTS . \n") spss.Submit("execute . \n") varcount=spss.GetVariableCount() data_str = spss.GetVariableName(0) if spss.GetVariableType(0) > 0: data_type_str=spss.GetVariableName(0)+' '+'varchar' else: data_type_str=spss.GetVariableName(0)+' '+ 'double' for i in range(1,varcount): data_str = data_str +', '+ spss.GetVariableName(i) data_type_str = data_type_str +', '+spss.GetVariableName(i) if spss.GetVariableType(i) > 0: data_type_str = ' '+data_type_str+' ' +'varchar' else: data_type_str = ' '+data_type_str+' ' + 'double' print DSN,db_name,table_name commands=""" SAVE TRANSLATE /TYPE=ODBC /CONNECT='DSN="""+DSN+""";UID= ;PWD=,3;DBALIAS="""+db_name+ """;' /ENCRYPTED /MISSING=IGNORE /SQL='CREATE TABLE """+table_name+""" ("""+data_type_str+""" )' /REPLACE /TABLE='SPSS_TEMP' /KEEP=All /SQL='INSERT INTO """+table_name+""" ("""+data_str+""") SELECT """+data_str+""" FROM SPSS_TEMP' /SQL='DROP TABLE SPSS_TEMP'.""" print commands spss.Submit(commands) end program.
我们首先取得数据集 RESULT 中各数据值及其类型,根据这些数据信息用 SQL 命令在数据库中创建数据表,该表的表名是由用户通过 UI 界面指定的。
在 Customer Dialog 中设计完 UI 界面,把 UI 界面与上述的 Python 程序进行关联后,我们需要在 Statistics 中安装该 Customer Dialog,便于用户通过 UI 来使用我们自定义的 Python 功能模块。安装方式如图。
如图所示,在 Customer Dialog Builder 界面选择 File -> Install,选择保存好的对话框文件(CustomerClustering.spd)并指定安装位置本例中我们把创建的名为 Customer Clustering 的功能安装 至 Utilities 菜单下。安装完成结果如下所示。
如图所示,Statistics 的菜单栏 Utilities 下,出现了我们自定义的功能模块 Customer Clustering。
回页首
本节分为两部分,讨论如何利用 Statistics 对自定义 Python 功能模块进行数据预处理以及对该功能模块的执行结果进行分析。
在大多数数据分析中,原始数据不适合直接使用,而需要进行预处理才能满足需求。比如,将多个小分类值组合为一个大分类值,或将一个连续变量转换成分类变量,这可以使得分析结果更易理解。本文需要把连续型变量“销售额”定义为一组分类变量,如:高、中、低,从而提高了数据的易用性。同时会使用 Statistics 的 Visual Binning 对功能模块输入数据进行预处理。
下面是处理过程。输入数据文件如下所示:
如图所示,我们需要对三类销售额进行分类,分别为“SALES_RETAIL”、“SALES_ONLINE”以及“SALES_TOTAL”。我们以“SLAES_RETAIL”为例,其余两个变量处理过程与其类似。
在 Statistics 工具栏中,选择 Transform -> Visual Binning,出现 Visual Binning 对话框,选中“SALES_RETAIL”,如下图所示。
选择“Continue”,指定新变量名 B_SALES_RETAIL。在“Grid”栏设置分类点(bin cut point)。这里,我们依据业务含义,选择了 9 个分类点,并点击 Make Lable 按钮,Statistics 会自动为分类变量生成标签。
如图所示,我们把原始的“SALES_RETAIL”变量分为了 10 类,由图示可知,连续型变量“SALES_RETAIL”的值,将会分别落入分类类型"B_SALES_RETAIL"的 10 个分类值中。运行结果部分展示如下图所示。
原始数据的经过预处理后,已经满足了本文用户自定义功能模块的数据要求。现在,用户可以直接进入 Utilities->Customer Clustering,来调用自定义的方法并获得结果。
运行 Statistics 工具栏 Utilities -> Customer Clustering ,出现自定义对话框。
如图所示,输入所需参数,红框部分为我们数据预处理 Visual Binning 后的输入文件,用户规定最大分组为 8,则共有 9 个客户分群,分别为 0 至 8。点击“OK”运行,运行结果保存为 .csv 文件和 .sav 文件。除此之外,我们还可以将执行结果上传至数据库。点击“Upload to Database”,出现如下子对话框。
如图所示,输入上传数据库所需参数,表“CustomerClustering”用于存储客户分群结果。
输出结果文件如下图所示。
其中,“CUSTOMER_CLUSTER”为客户的分组信息,如 Customer ID 分别为 1 的客户,属于分组 5。数据库上传结果如下所示。
由图可知,我们在指定数据库 TEST 中,创建了表 CUSTOMERCLUSTERING,红框 3 中为 CUSTOMERCLUSTER 属性,其包含了客户所属分组信息。
为了更加清楚的了解客户分群情况,我们可以利用 Statistics 中的 Frequencies 方法对其进行分析。分析结果如下。
Statistics | ||
---|---|---|
USTOMER_CLUSTER | ||
N | Valid | 50000 |
Missing | 0 | |
Median | 4.0000 | |
Mode | 1.00 |
由表 1 可知,输出结果中,针对客户分组“CUSTOMER_CLUSTER”共有 50000 条有效的客户记录,其中中位数为分组 4,说明大部分的客户都集中在前半部分的分组当中(分组 1 至分组 4),分组 1 拥有最多的客户。表 1 只能提供给我们大概的统计结果,业务含义较少,详细统计信息如下。
CUSTOMER_CLUSTER | |||||
---|---|---|---|---|---|
Frequency | Percent | Valid Percent | Cumulative Percent | ||
Valid | .00 | 427 | .9 | .9 | .9 |
1.00 | 6217 | 12.4 | 12.4 | 13.3 | |
2.00 | 6190 | 12.4 | 12.4 | 25.7 | |
3.00 | 6194 | 12.4 | 12.4 | 38.1 | |
4.00 | 6191 | 12.4 | 12.4 | 50.4 | |
5.00 | 6188 | 12.4 | 12.4 | 62.8 | |
6.00 | 6191 | 12.4 | 12.4 | 75.2 | |
7.00 | 6194 | 12.4 | 12.4 | 87.6 | |
8.00 | 6208 | 12.4 | 12.4 | 100.0 | |
Total | 50000 | 100.0 | 100.0 |
由表 2 可知,分组 0 拥有最少的客户数 427,分组 1 拥有最多的客户数 6217,并且客户较为均匀的分布在分组 1 至分组 8。客户分布情况图如下。
上图是对客户分群情况更为直观的展示,分组 1 至分组 8 拥有较多的客户,且分布较均匀。针对分组 0,由于其人数较少,业务优先级较低,我们可以对该组客户采用一般的销售策略。而对于分组 1 至分组 8,由于其人数较多,业务优先级较高,我们需要对该组客户进行进一步的分析,以便采取更加准确的销售策略,提升客户的忠诚度,减少客户流失。
回页首
本文介绍了用户自定义 Python 功能模块与 IBM SPSS Statistics 集成的方法,并对集成结果进行了演示与分析。通过本文,读者可以了解,如何设计满足用户习惯的 UI 交互界面,如何编写内置统计程序,以及如何与 Statistics 进行集成。