编译环境:我用的是(Keil)MDK4.7.2
stm32库版本:我用的是3.5.0
一、本文不对FLASH的基础知识做详细的介绍,不懂得地方请查阅有关资料。
对STM32 内部FLASH进行编程操作,需要遵循以下流程:
FLASH解锁
清除相关标志位
擦除FLASH(先擦除后写入的原因是为了工业上制作方便,即物理实现方便)
写入FLASH
锁定FLASH
实例:
#define FLASH_PAGE_SIZE ((uint16_t)0x400) //如果一页为1K大小
#define WRITE_START_ADDR ((uint32_t)0x08008000)//写入的起始地址
#define WRITE_END_ADDR ((uint32_t)0x0800C000)//结束地址
uint32_t EraseCounter = 0x00, Address = 0x00;//擦除计数,写入地址
uint32_t Data = 0x3210ABCD;//要写入的数据
uint32_t NbrOfPage = 0x00;//记录要擦除的页数
volatile FLASH_Status FLASHStatus = FLASH_COMPLETE;/*FLASH擦除完成标志*/
void main()
{
/*解锁FLASH*/
FLASH_Unlock();
/*计算需要擦除FLASH页的个数 */
NbrOfPage = (WRITE_END_ADDR - WRITE_START_ADDR) / FLASH_PAGE_SIZE;
/* 清除所有挂起标志位 */
FLASH_ClearFlag(FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPRTERR);
/* 擦除FLASH 页*/
for(EraseCounter = 0; (EraseCounter < NbrOfPage) && (FLASHStatus == FLASH_COMPLETE); EraseCounter++)
{
FLASHStatus = FLASH_ErasePage(WRITE_START_ADDR + (FLASH_PAGE_SIZE * EraseCounter));
}
/* 写入FLASH */
Address = WRITE_START_ADDR;
while((Address < WRITE_END_ADDR) && (FLASHStatus == FLASH_COMPLETE))
{
FLASHStatus = FLASH_ProgramWord(Address, Data);
Address = Address + 4;
}
/* 锁定FLASH */
FLASH_Lock();
}
二、FLASH 擦除(以及防止误擦除程序代码)
1、擦除函数
FLASH_Status FLASH_ErasePage(u32 Page_Address)只要()里面的数是flash第xx页中对应的任何一个地址!就是擦除xx页全部内容!
防止误擦除有用程序代码的方法
方法一:首先要计算程序代码有多少,把FLASH存取地址设置在程序代码以外的地方,这样就不会破坏用户程序。原则上从0x0800 0000 + 0x1000 以后的FLASH空间都可以作为存储使用。如果代码量占了 0x3000, 那么存储在 0x0800 0000+ 0x4000 以后的空间就不会破坏程序了。
方法二:先在程序中定义一个const 类型的常量数组,并指定其存储位置(方便找到写入、读取位置),这样编译器就会分配你指定的空间将常量数组存入FLASH中。当你做擦除。读写操作时,只要在这个常量数组所在的地址范围就好。
const uint8_t table[10] __at(0x08010000) = {0x55} ;
MDK3.03A开始就支持关键字 __at() 。
需要加#include
方法三:在程序中定义一个const 类型的常量数组,无需指定其存储位置。只要定义一个32位的变量存储这个数组的FLASH区地址就行。
uint32_t address;//STM32的地址是32位的
const uint8_t imageBuffer[1024] = {0,1,2,3,4,5,6,7};
address = (uint32_t) imageBuffer;/*用强制类型转换的方式,可以把FLASH中存储的imageBuffer[1024]的地址读到RAM中的变量address 里,方便找到写入、读取位置*/
方法四:利用写保护的方式(没研究明白)
三、FLASH写入
FLASH的写入地址必须是偶数(FLASH机制决定的FLASH写入的时候只能是偶数地址写入,必须写入半字或字,也就是2个字节或是4字节的内容)
四、FLASH 读取方法
*(uint32_t *)0x8000000;//读一个字
*(uint8_t *)0x8000000;//读一个字节;
*(uint16_t *)0x8000000;//读半字;
举例:
uint8_t data;
data = *(uint8_t *)0x8000000;//就是读取FLASH中地址0x8000000处的数据
五、几个有用的子函数
/*
功能:向指定地址写入数据
参数说明:addr 写入的FLASH页的地址
p 被写入变量的地址(数组中的必须是uint8_t类型,元素个数必须是偶数)
Byte_Num 被写入变量的字节数(必须是偶数)
*/
void FLASH_WriteByte(uint32_t addr , uint8_t *p , uint16_t Byte_Num)
{
uint32_t HalfWord;
Byte_Num = Byte_Num/2;
FLASH_Unlock();
FLASH_ClearFlag(FLASH_FLAG_BSY | FLASH_FLAG_EOP | FLASH_FLAG_PGERR | FLASH_FLAG_WRPRTERR);
FLASH_ErasePage(addr);
while(Byte_Num --)
{
HalfWord=*(p++);
HalfWord|=*(p++)<<8;
FLASH_ProgramHalfWord(addr, HalfWord);
addr += 2;
}
FLASH_Lock();
}
例:
uint8_t data[100];
FLASH_WriteByte(0x8000000 , data , 100);/*数组data的数据被写入FLASH中*/
/*
功能:从指定地址读取数据
参数说明:addr 从FLASH中读取的地址
p 读取后要存入变量的地址(数组中的必须是uint8_t类型)
Byte_Num 要读出的字节数
*/
void FLASH_ReadByte(uint32_t addr , uint8_t *p , uint16_t Byte_Num)
{
while(Byte_Num--)
{
*(p++)=*((uint8_t*)addr++);
}
}
例:
uint8_t data[101];
FLASH_ReadByte(0x8000001 , data , 101);/*FLASH中的数据被读入数组data中*/
、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
STM32 本身没有自带 EEPROM,但是 STM32 具有 IAP(在应用编程)功能,所以我们可以把它的 FLASH 当成 EEPROM 来使用
STM32 FLASH 简介
不同型号的 STM32,其 FLASH 容量也有所不同,最小的只有 16K 字节,最大的则达到了1024K 字节。战舰 STM32 开发板选择的 STM32F103ZET6 的 FLASH 容量为 512K 字节,属于大容量产品(另外还有中容量和小容量产品),
STM32 的闪存模块由:主存储器、信息块和闪存存储器接口寄存器等 3 部分组成。
主存储器,该部分用来存放代码和数据常数(如 const 类型的数据)。对于大容量产品,其被划分为 256 页,每页 2K 字节。注意,小容量和中容量产品则每页只有 1K 字节。从上图可以看出主存储器的起始地址就是 0X08000000, B0、B1 都接 GND 的时候,就是从 0X08000000开始运行代码的。
信息块,该部分分为 2 个小部分,其中启动程序代码,是用来存储 ST 自带的启动程序,用于串口下载代码,当 B0 接 V3.3,B1 接 GND 的时候,运行的就是这部分代码。用户选择字节,则一般用于配置写保护、读保护等功能,
闪存存储器接口寄存器,该部分用于控制闪存读写等,是整个闪存模块的控制机构。
闪存的读取
内置闪存模块可以在通用地址空间直接寻址,任何 32 位数据的读操作都能访问闪存模块的内容并得到相应的数据。读接口在闪存端包含一个读控制器,还包含一个 AHB 接口与 CPU 衔接。这个接口的主要工作是产生读闪存的控制信号并预取 CPU 要求的指令块,预取指令块仅用于在 I-Code 总线上的取指操作,数据常量是通过 D-Code 总线访问的。这两条总线的访问目标是相同的闪存模块,访问 D-Code 将比预取指令优先级高
这里要特别留意一个闪存等待时间,因为 CPU 运行速度比 FLASH 快得多,STM32F103的 FLASH 最快访问速度≤24Mhz,如果 CPU 频率超过这个速度,那么必须加入等待时间,比如我们一般使用 72Mhz 的主频,那么 FLASH 等待周期就必须设置为 2,该设置通过 FLASH_ACR寄存器设置。
使用 STM32 的官方固件库操作 FLASH 的几个常用函数。这些函数和定义分布在文件 stm32f10x_flash.c 以及 stm32f10x_flash.h 文件中。
1. 锁定解锁函数
在对 FLASH 进行写操作前必须先解锁,解锁操作也就是必须在 FLASH_KEYR 寄存器写入特定的序列(KEY1 和 KEY2),固件库函数实现很简单:
void FLASH_Unlock(void);
同样的道理,在对 FLASH 写操作完成之后,我们要锁定 FLASH,使用的库函数是:
void FLASH_Lock(void);
2. 写操作函数
固件库提供了三个 FLASH 写函数:
FLASH_Status FLASH_ProgramWord(uint32_t Address, uint32_t Data);
FLASH_Status FLASH_ProgramHalfWord(uint32_t Address, uint16_t Data);
FLASH_Status FLASH_ProgramOptionByteData(uint32_t Address, uint8_t Data);
顾名思义分别为:FLASH_ProgramWord 为 32 位字写入函数,其他分别为 16 位半字写入和用户选择字节写入函数。这里需要说明,32 位字节写入实际上是写入的两次 16 位数据,写完第一次后地址+2,这与我们前面讲解的 STM32 闪存的编程每次必须写入 16 位并不矛盾。写入 8位实际也是占用的两个地址了,跟写入 16 位基本上没啥区别。
3. 擦除函数
固件库提供三个 FLASH 擦除函数:
FLASH_Status FLASH_ErasePage(uint32_t Page_Address);
FLASH_Status FLASH_EraseAllPages(void);
FLASH_Status FLASH_EraseOptionBytes(void);
这三个函数可以顾名思义了,非常简单。
4. 获取 FLASH 状态
主要是用的函数是:
FLASH_Status FLASH_GetStatus(void);
返回值是通过枚举类型定义的:
typedef enum
{
FLASH_BUSY = 1,//忙
FLASH_ERROR_PG,//编程错误
FLASH_ERROR_WRP,//写保护错误
FLASH_COMPLETE,//操作完成
FLASH_TIMEOUT//操作超时
}FLASH_Status;
从这里面我们可以看到 FLASH 操作的 5 个状态,每个代表的意思我们在后面注释了。
5. 等待操作完成函数
在执行闪存写操作时,任何对闪存的读操作都会锁住总线,在写操作完成后读操作才能正确地进行;既在进行写或擦除操作时,不能进行代码或数据的读取操作。所以在每次操作之前,我们都要等待上一次操作完成这次操作才能开始。使用的函数是:
FLASH_Status FLASH_WaitForLastOperation(uint32_t Timeout)
入口参数为等待时间,返回值是 FLASH 的状态,这个很容易理解,这个函数本身我们在固件库中使用得不多,但是在固件库函数体中间可以多次看到。
6. 读 FLASH 特定地址数据函数
有写就必定有读,而读取 FLASH 指定地址的半字的函数固件库并没有给出来,这里我们自己写的一个函数:
u16 STMFLASH_ReadHalfWord(u32 faddr)
{
return *(vu16*)faddr;
}
//faddr:读地址(此地址必须为2的倍数!!)
//返回值:对应数据.
u16 STMFLASH_ReadHalfWord(u32 faddr)
{
return *(vu16*)faddr;
}
#if STM32_FLASH_WREN //如果使能了写
//不检查的写入
//WriteAddr:起始地址
//pBuffer:数据指针
//NumToWrite:半字(16位)数
void STMFLASH_Write_NoCheck(u32 WriteAddr,u16 *pBuffer,u16 NumToWrite)
{
u16 i;
for(i=0;i
{
FLASH_ProgramHalfWord(WriteAddr,pBuffer[i]);
WriteAddr+=2;//地址增加2.
}
}
//从指定地址开始写入指定长度的数据
//WriteAddr:起始地址(此地址必须为2的倍数!!)
//pBuffer:数据指针
//NumToWrite:半字(16位)数(就是要写入的16位数据的个数.)
#if STM32_FLASH_SIZE<256
#define STM_SECTOR_SIZE 1024 //字节
#else
#define STM_SECTOR_SIZE 2048
#endif
u16 STMFLASH_BUF[STM_SECTOR_SIZE/2];//最多是2K字节
void STMFLASH_Write(u32 WriteAddr,u16 *pBuffer,u16 NumToWrite)
{
u32 secpos; //扇区地址
u16 secoff; //扇区内偏移地址(16位字计算)
u16 secremain; //扇区内剩余地址(16位字计算)
u16 i;
u32 offaddr; //去掉0X08000000后的地址
if(WriteAddr
FLASH_Unlock(); //解锁
offaddr=WriteAddr-STM32_FLASH_BASE; //实际偏移地址.
secpos=offaddr/STM_SECTOR_SIZE; //扇区地址 0~127 for STM32F103RBT6
secoff=(offaddr%STM_SECTOR_SIZE)/2; //在扇区内的偏移(2个字节为基本单位.)
secremain=STM_SECTOR_SIZE/2-secoff; //扇区剩余空间大小
if(NumToWrite<=secremain)secremain=NumToWrite;//不大于该扇区范围
while(1)
{
STMFLASH_Read(secpos*STM_SECTOR_SIZE+STM32_FLASH_BASE,STMFLASH_BUF,STM_SECTOR_SIZE/2);//读出整个扇区的内容
for(i=0;i
{
if(STMFLASH_BUF[secoff+i]!=0XFFFF)break;//需要擦除
}
if(i
{
FLASH_ErasePage(secpos*STM_SECTOR_SIZE+STM32_FLASH_BASE);//擦除这个扇区
for(i=0;i
{
STMFLASH_BUF[i+secoff]=pBuffer[i];
}
STMFLASH_Write_NoCheck(secpos*STM_SECTOR_SIZE+STM32_FLASH_BASE,STMFLASH_BUF,STM_SECTOR_SIZE/2);//写入整个扇区
}else STMFLASH_Write_NoCheck(WriteAddr,pBuffer,secremain);//写已经擦除了的,直接写入扇区剩余区间.
if(NumToWrite==secremain)break;//写入结束了
else//写入未结束
{
secpos++; //扇区地址增1
secoff=0; //偏移位置为0
pBuffer+=secremain; //指针偏移
WriteAddr+=secremain; //写地址偏移
NumToWrite-=secremain; //字节(16位)数递减
if(NumToWrite>(STM_SECTOR_SIZE/2))secremain=STM_SECTOR_SIZE/2;//下一个扇区还是写不完
else secremain=NumToWrite;//下一个扇区可以写完了
}
};
FLASH_Lock();//上锁
}
#endif
//从指定地址开始读出指定长度的数据
//ReadAddr:起始地址
//pBuffer:数据指针
//NumToWrite:半字(16位)数
void STMFLASH_Read(u32 ReadAddr,u16 *pBuffer,u16 NumToRead)
{
u16 i;
for(i=0;i
{
pBuffer[i]=STMFLASH_ReadHalfWord(ReadAddr);//读取2个字节.
ReadAddr+=2;//偏移2个字节.
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
//WriteAddr:起始地址
//WriteData:要写入的数据
void Test_Write(u32 WriteAddr,u16 WriteData)
{
STMFLASH_Write(WriteAddr,&WriteData,1);//写入一个字
}