Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的。本章节我们将详细介绍Python的面向对象编程。
如果你以前没有接触过面向对象的编程语言,那你可能需要先了解一些面向对象语言的一些基本特征,在头脑里头形成一个基本的面向对象的概念,这样有助于你更容易的学习Python的面向对象编程。
接下来我们先来简单的了解下面向对象的一些基本特征。
使用 class 语句来创建一个新类,class 之后为类的名称并以冒号结尾:
class ClassName:
'类的帮助信息' #类文档字符串
class_suite #类体
类的帮助信息可以通过ClassName._doc_查看。
class_suite 由类成员,方法,数据属性组成。
以下是一个简单的 Python 类的例子:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
class Employee:
'所有员工的基类'
empCount = 0
def __init__(self, name, salary):
self.name = name
self.salary = salary
Employee.empCount += 1
def displayCount(self):
print "Total Employee %d" % Employee.empCount
def displayEmployee(self):
print("Name : ", self.name, ", Salary: ", self.salary)
类的方法与普通的函数只有一个特别的区别——它们必须有一个额外的第一个参数名称, 按照惯例它的名称是 self。
实例:
class Test:
def prt(self):
print(self)
print(self.__class__)
t = Test()
t.prt()
以上实例执行结果为:
<__main__.Test instance at 0x10d066878>
__main__.Test
从执行结果可以很明显的看出,self 代表的是类的实例,代表当前对象的地址,而 self.class 则指向类。
self 不是 python 关键字,我们把他换成 arg 也是可以正常执行的:
实例:
class Test:
def prt(arg ):
print(arg )
print(arg .__class__)
t = Test()
t.prt()
以上实例执行结果为:
<__main__.Test instance at 0x10d066878>
__main__.Test
实例化类其他编程语言中一般用关键字 new,但是在 Python 中并没有这个关键字,类的实例化类似函数调用方式。
以下使用类的名称 Employee 来实例化,并通过 _ init _ 方法接受参数。
"创建 Employee 类的第一个对象"
emp1 = Employee("Zara", 2000)
"创建 Employee 类的第二个对象"
emp2 = Employee("Manni", 5000)
您可以使用点(.)来访问对象的属性。使用如下类的名称访问类变量:
emp1.displayEmployee()
emp2.displayEmployee()
print "Total Employee %d" % Employee.empCount
完整实例:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
class Employee:
'所有员工的基类'
empCount = 0
def __init__(self, name, salary):
self.name = name
self.salary = salary
Employee.empCount += 1
def displayCount(self):
print "Total Employee %d" % Employee.empCount
def displayEmployee(self):
print("Name : ", self.name, ", Salary: ", self.salary)
"创建 Employee 类的第一个对象"
emp1 = Employee("Zara", 2000)
"创建 Employee 类的第二个对象"
emp2 = Employee("Manni", 5000)
emp1.displayEmployee()
emp2.displayEmployee()
print("Total Employee %d" % Employee.empCount)
执行以上代码输出结果如下:
Name : Zara ,Salary: 2000
Name : Manni ,Salary: 5000
Total Employee 2
你可以添加,删除,修改类的属性,如下所示:
emp1.age = 7 # 添加一个 'age' 属性
emp1.age = 8 # 修改 'age' 属性
del emp1.age # 删除 'age' 属性
你也可以使用以下函数的方式来访问属性:
hasattr(emp1, 'age') # 如果存在 'age' 属性返回True。
getattr(emp1, 'age') # 返回 'age' 属性的值
setattr(emp1, 'age', 8) # 添加属性 'age' 值为 8
delattr(emp1, 'age') # 删除属性 'age'
Python内置类属性调用实例如下:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
class Employee:
'所有员工的基类'
empCount = 0
def __init__(self, name, salary):
self.name = name
self.salary = salary
Employee.empCount += 1
def displayCount(self):
print "Total Employee %d" % Employee.empCount
def displayEmployee(self):
print "Name : ", self.name, ", Salary: ", self.salary
print "Employee.__doc__:", Employee.__doc__
print "Employee.__name__:", Employee.__name__
print "Employee.__module__:", Employee.__module__
print "Employee.__bases__:", Employee.__bases__
print "Employee.__dict__:", Employee.__dict__
执行以上代码输出结果如下:
Employee.__doc__: 所有员工的基类
Employee.__name__: Employee
Employee.__module__: __main__
Employee.__bases__: ()
Employee.__dict__: {'__module__': '__main__', 'displayCount': 0x10a939c80>, 'empCount': 0, 'displayEmployee': 0x10a93caa0>, '__doc__': '\xe6\x89\x80\xe6\x9c\x89\xe5\x91\x98\xe5\xb7\xa5\xe7\x9a\x84\xe5\x9f\xba\xe7\xb1\xbb', '__init__': 0x10a939578>}
Python 使用了引用计数这一简单技术来跟踪和回收垃圾。
在 Python 内部记录着所有使用中的对象各有多少引用。
一个内部跟踪变量,称为一个引用计数器。
当对象被创建时, 就创建了一个引用计数, 当这个对象不再需要时, 也就是说, 这个对象的引用计数变为0 时, 它被垃圾回收。但是回收不是”立即”的, 由解释器在适当的时机,将垃圾对象占用的内存空间回收。
a = 40 # 创建对象 <40>
b = a # 增加引用, <40> 的计数
c = [b] # 增加引用. <40> 的计数
del a # 减少引用 <40> 的计数
b = 100 # 减少引用 <40> 的计数
c[0] = -1 # 减少引用 <40> 的计数
垃圾回收机制不仅针对引用计数为0的对象,同样也可以处理循环引用的情况。循环引用指的是,两个对象相互引用,但是没有其他变量引用他们。这种情况下,仅使用引用计数是不够的。Python 的垃圾收集器实际上是一个引用计数器和一个循环垃圾收集器。作为引用计数的补充, 垃圾收集器也会留心被分配的总量很大(及未通过引用计数销毁的那些)的对象。 在这种情况下, 解释器会暂停下来, 试图清理所有未引用的循环。
析构函数 _ del _ ,_ del _ 在对象销毁的时候被调用,当对象不再被使用时,_ del _方法运行:
实例
#!/usr/bin/python
# -*- coding: UTF-8 -*-
class Point:
def __init__( self, x=0, y=0):
self.x = x
self.y = y
def __del__(self):
class_name = self.__class__.__name__
print class_name, "销毁"
pt1 = Point()
pt2 = pt1
pt3 = pt1
print id(pt1), id(pt2), id(pt3) # 打印对象的id
del pt1
del pt2
del pt3
以上实例运行结果如下:
3083401324 3083401324 3083401324
Point 销毁
注意:通常你需要在单独的文件中定义一个类
面向对象的编程带来的主要好处之一是代码的重用,实现这种重用的方法之一是通过继承机制。继承完全可以理解成类之间的类型和子类型关系。
需要注意的地方:继承语法 class 派生类名(基类名)://… 基类名写在括号里,基本类是在类定义的时候,在元组之中指明的。
在python中继承中的一些特点:
如果在继承元组中列了一个以上的类,那么它就被称作”多重继承” 。
语法:
派生类的声明,与他们的父类类似,继承的基类列表跟在类名之后,如下所示:
class SubClassName (ParentClass1[, ParentClass2, ...]):
'Optional class documentation string'
class_suite
实例
#!/usr/bin/python
# -*- coding: UTF-8 -*-
class Parent: # 定义父类
parentAttr = 100
def __init__(self):
print "调用父类构造函数"
def parentMethod(self):
print '调用父类方法'
def setAttr(self, attr):
Parent.parentAttr = attr
def getAttr(self):
print "父类属性 :", Parent.parentAttr
class Child(Parent): # 定义子类
def __init__(self):
print "调用子类构造方法"
def childMethod(self):
print '调用子类方法'
c = Child() # 实例化子类
c.childMethod() # 调用子类的方法
c.parentMethod() # 调用父类方法
c.setAttr(200) # 再次调用父类的方法 - 设置属性值
c.getAttr() # 再次调用父类的方法 - 获取属性值
以上代码执行结果如下:
调用子类构造方法
调用子类方法
调用父类方法
父类属性 : 200
你可以继承多个类
class A: # 定义类 A
.....
class B: # 定义类 B
.....
class C(A, B): # 继承类 A 和 B
.....
你可以使用issubclass()或者isinstance()方法来检测。
如果你的父类方法的功能不能满足你的需求,你可以在子类重写你父类的方法:
实例:
#!/usr/bin/python
# -*- coding: UTF-8 -*-
class Parent: # 定义父类
def myMethod(self):
print '调用父类方法'
class Child(Parent): # 定义子类
def myMethod(self):
print '调用子类方法'
c = Child() # 子类实例
c.myMethod() # 子类调用重写方法
执行以上代码输出结果如下:
调用子类方法
下表列出了一些通用的功能,你可以在自己的类重写:
下表列出了一些通用的功能,你可以在自己的类重写:
序号 | 方法, 描述 & 简单的调用 |
---|---|
1 | init (self [,args…])构造函数简单的调用方法: obj = className(args) |
2 | del( self )析构方法, 删除一个对象简单的调用方法 : del obj |
3 | repr( self )转化为供解释器读取的形式简单的调用方法 : repr(obj) |
4 | str( self )用于将值转化为适于人阅读的形式简单的调用方法 : str(obj) |
5 | cmp( self, x )对象比较简单的调用方法 : cmp(obj, x) |
Python同样支持运算符重载,实例如下:
实例:
#!/usr/bin/python
class Vector:
def __init__(self, a, b):
self.a = a
self.b = b
def __str__(self):
return 'Vector (%d, %d)' % (self.a, self.b)
def __add__(self,other):
return Vector(self.a + other.a, self.b + other.b)
v1 = Vector(2,10)
v2 = Vector(5,-2)
print v1 + v2
以上代码执行结果如下所示:
Vector(7,8)
__private_attrs:两个下划线开头,声明该属性为私有,不能在类的外部被使用或直接访问。在类内部的方法中使用时self.__private_attrs。
在类的内部,使用 def d e f 关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数 self,且为第一个参数
_private_method:两个下划线开头,声明该方法为私有方法,不能在类地外部调用。在类的内部调用self._ _private_ __methods
实例
#!/usr/bin/python
# -*- coding: UTF-8 -*-
class JustCounter:
__secretCount = 0 # 私有变量
publicCount = 0 # 公开变量
def count(self):
self.__secretCount += 1
self.publicCount += 1
print self.__secretCount
counter = JustCounter()
counter.count()
counter.count()
print counter.publicCount
print counter.__secretCount # 报错,实例不能访问私有变量
Python 通过改变名称来包含类名:
1
2
2
Traceback (most recent call last):
File "test.py", line 17, in
print counter.__secretCount # 报错,实例不能访问私有变量
AttributeError: JustCounter instance has no attribute '__secretCount'
Python不允许实例化的类访问私有数据,但你可以使用 object._className__attrName 访问属性,将如下代码替换以上代码的最后一行代码:
.........................
print counter._JustCounter__secretCount
执行以上代码,执行结果如下:
1
2
2
2
object._className__attrName 实例及解析
#!/usr/bin/python
# -*- coding: UTF-8 -*-
class JustCounter:
__secretCount = 0 # 私有变量
publicCount = 0 # 公开变量
def count(self):
self.__secretCount += 1
self.publicCount += 1
print self.__secretCount
def count2(self):
print self.__secretCount
counter = JustCounter()
counter.count()
# 在类的对象生成后,调用含有类私有属性的函数时就可以使用到私有属性.
counter.count()
#第二次同样可以.
print counter.publicCount
print counter._JustCounter__secretCount # 不改写报错,实例不能访问私有变量
try:
counter.count2()
except IOError:
print "不能调用非公有属性!"
else:
print "ok!" #现在呢!证明是滴!
新式类和经典类的区别:
class A:
def foo(self):
print('called A.foo()')
class B(A):
pass
class C(A):
def foo(self):
print('called C.foo()')
class D(B, C,object):
pass
if __name__ == '__main__':
d = D()
d.foo()
D 继承了 object 和不继承程序输出不一样,继承 object 会调用 C 类的 foo,否则会调用 A 的。
使用 super 进行父类构造调用那么必须使用 object 继承的新式类,否则报错。