Python是面向对象的语言,也支持面向对象编程的三大特性:继承、封装(隐藏)、多态。
封装(隐藏)
隐藏对象的属性和实现细节,只对外提供必要的方法。相当于将“细节封装起来”,只 对外暴露“相关调用方法”。 通过“私有属性、私有方法”的方式,实现“封装”。Python 追求简洁的 语法,没有严格的语法级别的“访问控制符”,更多的是依靠程序员自觉实现。
继承
继承可以让子类具有父类的特性,提高了代码的重用性。
从设计上是一种增量进化,原有父类设计不变的情况下,可以增加新的功能,或者改进 已有的算法。
多态
多态是指同一个方法调用由于对象不同会产生不同的行为。
继承是面向对象程序设计的重要特征,也是实现“代码复用”的重要手段。
如果一个新类继承自一个设计好的类,就直接具备了已有类的特征,就大大降低了工作难度。已有的类,称为“父类或者基类”,新的类,称为“子类或者派生类”。
Python支持多重继承,一个子类可以继承多个父类。继承的语法格式如下:
class 子类类名(父类 1[,父类 2,…]): 类体
如果在类定义中没有指定父类,则默认父类是object 类。也就是说,object 是所有类的父 类,里面定义了一些所有类共有的默认实现,比如:new()。
定义子类时,必须在其构造函数中调用父类的构造函数。
调用格式如下: 父类名.init(self, 参数列表)
通过类的方法 mro()或者类的属性__mro__可以输出这个类的继承层次结构。
object 类是所有类的父类,因此所有的类都有object 类的属性和方法。
内置函数 dir(),他可以让我们方便的看到指定对象所有的 属性。
class Person:
def __init__(self,name,age):
self.name = name
self.age = age
def say_age(self):
print(self.name,"的年龄是:",self.age)
obj = object()
print(dir(obj))
s2 = Person("高淇",18)
print(dir(s2))
#执行结果:
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'age', 'name', 'say_age']
可以发现这样几个要点:
object 有一个__str__()方法,用于返回一个对于“对象的描述”,对应于内置函数 str() 经常用于 print()方法,帮助查看对象的信息。str()可以重写。
Python支持多重继承,一个子类可以有多个“直接父类”。这样,就具备了“多个父 类”的特点。但是由于,这样会被“类的整体层次”搞的异常复杂,尽量避免使用。
Python支持多继承,如果父类中有相同名字的方法,在子类没有指定父类名时,解释器将 “从左向右”按顺序搜索。
MRO(MethodResolution Order):方法解析顺序。 通过mro()方法获得 “类的层次结构”,方法解析顺序也是按照这个“类的层次结构”寻找的。
在子类中,如果想要获得父类的方法时,可以通过 super()来做。
super()代表父类的定义,不是父类对象。
多态(polymorphism)是指同一个方法调用由于对象不同可能会产生不同的行为。
关于多态要注意以下2点:
Python的运算符实际上是通过调用对象的特殊方法实现的。
a = 20
b = 30
c = a+b
d = a.__add__(b)
print("c=",c)
print("d=",d)
Python对象中包含了很多双下划线开始和结束的属性,这些是特殊属性,有特殊用法。
变量的赋值操作
只是形成两个变量,实际还是指向同一个对象。
**浅拷贝 **
Python拷贝一般都是浅拷贝。拷贝时,对象包含的子对象内容不拷贝。因此,源对象 和拷贝对象会引用同一个子对象。
深拷贝
使用copy模块的 deepcopy 函数,递归拷贝对象中包含的子对象。源对象和拷贝对象 所有的子对象也不同。
“is-a”关系,可以使用“继承”。从而实现子类拥有的父类的方法和属性。“is-a” 关系指的是类似这样的关系:狗是动物,dog is animal。狗类就应该继承动物类。
“has-a”关系,可以使用“组合”,也能实现一个类拥有另一个类的方法和属性。” has-a”关系指的是这样的关系:手机拥有 CPU。 MobilePhone has a CPU。
设计模式是面向对象语言特有的内容,设计 模式有很多种,比较流行的是:GOF(Goup Of Four)23 种设计模式。
工厂模式实现了创建者和调用者的分离,使用专门的工厂类将选择实现类、创建对象进 行统一的管理和控制。
# 工 厂 模 式
class CarFactory:
def createCar(self,brand):
if brand == "奔驰":
return Benz()
elif brand == "宝马":
return BMW()
elif brand == '比亚迪':
return BYD()
else:
return "未知品牌,无法创建"
class Benz:
pass
class BMW:
pass
class BYD:
pass
factory = CarFactory()
c1 = factory.createCar("奔驰")
c2 = factory.createCar("宝马")
print(c1)
print(c2)
单例模式(Singleton Pattern)的核心作用是确保一个类只有一个实例,并且提供一 个访问该实例的全局访问点。
单例模式只生成一个实例对象,减少了对系统资源的开销。当一个对象的产生需要比较 多的资源,如读取配置文件、产生其他依赖对象时,可以产生一个“单例对象”,然后永久 驻留内存中,从而极大的降低开销。
# 单 例 模 式
class MySingleton:
__obj = None
__init_flag = True
def __new__(cls, *args, **kwargs):
if cls.__obj == None:
cls.__obj = object.__new__(cls)
return cls.__obj
def __init__(self,name):
if MySingleton.__init_flag:
print("init....")
self.name = name
MySingleton.__init_flag = False
a = MySingleton("aa")
print(a)
b = MySingleton("bb")
print(b)
设计模式称之为“模式”,就是一些固定的套路。我们很容易用到其他场景上,比如前面讲 的工厂模式,我们需要将工厂类定义成“单例”,只需要简单的套用即可实现:
#测试工厂模式和单例模式的整合使用
class CarFactory:
__obj = None #类属性
__init_flag = True
def create_car(self,brand):
if brand =="奔驰":
return Benz()
elif brand =="宝马":
return BMW()
elif brand == "比亚迪":
return BYD()
else:
return "未知品牌,无法创建"
def __new__(cls, *args, **kwargs):
if cls.__obj ==None:
cls.__obj = object.__new__(cls)
return cls.__obj
def __init__(self):
if CarFactory.__init_flag:
print("init CarFactory....")
CarFactory.__init_flag = False
class Benz: pass
class BMW: pass
class BYD: pass
factory = CarFactory()
c1 = factory.create_car("奔驰")
c2 = factory.create_car("比亚迪")
print(c1)
print(c2)
factory2 = CarFactory()
print(factory)
print(factory2)