怎样根据系统函数的零极点个数和类型判断滤波器类型

转载于:https://zhidao.baidu.com/question/262466514.html

根据系统函数快速判断滤波器类型 (1)死办法,用傅里叶变换求出H(f),在画出幅频特copy性曲线,看高频部分是不是“通”
(2)用拉氏变换求出H(s),然后记住一句话:分子上有什么就通什么!
举个例子:
H(s)=as/(bs+c)
分子上百有“高次”,所以是高通。
这里的“高次”是这个意思:
分母上有s的0次和1次,分子是s的1次,所以是较高的那个,简称“高次”。
H(s)=a/(bs+c)
分子上有“低次”,所以是低通。
H(s)=as2/(bs2+cs+d)
分子上有“高次”,所以是高通。
H(s)=a/(bs^2+cs+d)
分子上有“低次”,所以是低通。
H(s)=as/(bs^2+cs+d)
分子上有“中间次”,所以是带通。
第(2)种方法还没找到理论根据,如果将分子分母都除以“高次”,在判断频率从小变化到无度穷的情况能理解
如果只有一个零极点,可以根据复平面上零极点位置来判断。

你可能感兴趣的:(信号与系统,信号处理,信号与系统)