xmake从入门到精通9:交叉编译详解

xmake是一个基于Lua的轻量级现代化c/c 的项目构建工具,主要特点是:语法简单易上手,提供更加可读的项目维护,实现跨平台行为一致的构建体验。

除了win, linux, macOS平台,以及android, ios等移动端平台的内建构建支持,xmake也支持对各种其他工具链的交叉编译支持,本文我们将会详细介绍下如何使用xmake进行交叉编译。

  • 项目源码
  • 官方文档

交叉编译工具链简介

通常,如果我们需要在当前pc环境编译生成其他设备上才能运行的目标文件时候,就需要通过对应的交叉编译工具链来编译生成它们,比如在win/macos上编译linux的程序,或者在linux上编译其他嵌入式设备的目标文件等。

通常的交叉编译工具链都是基于gcc/clang的,大都具有类似如下的结构:

/home/toolchains_sdkdir
   - bin
       - arm-linux-armeabi-gcc
       - arm-linux-armeabi-ld
       - ...
   - lib
       - libxxx.a
   - include
       - xxx.h

每个工具链都有对应的include/lib目录,用于放置一些系统库和头文件,例如libc, stdc 等,而bin目录下放置的就是编译工具链一系列工具。例如:

arm-linux-armeabi-ar
arm-linux-armeabi-as
arm-linux-armeabi-c  
arm-linux-armeabi-cpp
arm-linux-armeabi-g  
arm-linux-armeabi-gcc
arm-linux-armeabi-ld
arm-linux-armeabi-nm
arm-linux-armeabi-strip

其中arm-linux-armeabi-前缀就是cross,通过用来标示目标平台和架构,主要用于跟主机自身的gcc/clang进行区分。

里面的gcc/g 就是c/c 的编译器,通常也可以作为链接器使用,链接的时候内部会去调用ld来链接,并且自动追加一些c 库。cpp是预处理器,as是汇编器,ar用于生成静态库,strip用于裁剪掉一些符号信息,使得目标程序会更加的小。nm用于查看导出符号列表。

自动探测和编译

如果我们的交叉编译工具链是上文的结构,xmake会自动检测识别这个sdk的结构,提取里面的cross,以及include/lib路径位置,用户通常不需要做额外的参数设置,只需要配置好sdk根目录就可以编译了,例如:

$ xmake f -p cross --sdk=/home/toolchains_sdkdir
$ xmake

其中,-p cross用于指定当前的平台是交叉编译平台,--sdk=用于指定交叉工具链的根目录。

注:我们也可以指定-p linux平台来配置交叉编译,效果是一样的,唯一的区别是额外标识了linux平台名,方便xmake.lua里面通过is_plat("linux")来判断平台。

这个时候,xmake会去自动探测gcc等编译器的前缀名cross:arm-linux-armeabi-,并且编译的时候,也会自动加上链接库头文件的搜索选项,例如:

-I/home/toolchains_sdkdir/include 
-L/home/toolchains_sdkdir/lib

这些都是xmake自动处理的,不需要手动配置他们。

手动配置编译

如果上面的自动检测对某些工具链,还无法完全通过编译,就需要用户自己手动设置一些交叉编译相关的配置参数,来调整适应这些特殊的工具链了,下面我会逐一讲解如何配置。

设置工具链bin目录

对于不规则工具链目录结构,靠单纯地--sdk选项设置,没法完全检测通过的情况下,可以通过这个选项继续附加设置工具链的bin目录位置。

例如:一些特殊的交叉工具链的,编译器bin目录,并不在 /home/toolchains_sdkdir/bin 这个位置,而是独立到了 /usr/opt/bin

这个时候,我们可以在设置了sdk参数的基础上追加bin目录的参数设置,来调整工具链的bin目录。

$ xmake f -p linux --sdk=/home/toolchains_sdkdir --bin=/usr/opt/bin
$ xmake

设置交叉工具链工具前缀

像aarch64-linux-android-这种,通常如果你配置了--sdk或者--bin的情况下,xmake会去自动检测的,不需要自己手动设置。

但是对于一些极特殊的工具链,一个目录下同时有多个cross前缀的工具bin混在一起的情况,你需要手动设置这个配置,来区分到底需要选用哪个bin。

例如,toolchains的bin目录下同时存在两个不同的编译器:

/opt/bin
  - armv7-linux-gcc 
  - aarch64-linux-gcc

我们现在想要选用armv7的版本,那么我们可以追加--cross=配置编译工具前缀名,例如:

$ xmake f -p linux --sdk=/usr/toolsdk --bin=/opt/bin --cross=armv7-linux-

设置c/c 编译器

如果还要继续细分选择编译器,则继续追加相关编译器选项,例如:

$ xmake f -p linux --sdk=/user/toolsdk --cc=armv7-linux-clang --cxx=armv7-linux-clang  

当然,我们也可以指定编译器全路径。

--cc用于指定c编译器名,--cxx用于指定c 编译器名。

注:如果存在CC/CXX环境变量的话,会优先使用当前环境变量中指定的值。

如果指定的编译器名不是那些xmake内置可识别的名字(带有gcc, clang等字样),那么编译器工具检测就会失败。

这个时候我们可以通过:

xmake f --cxx=clang  @/home/xxx/c  mips.exe

设置c mips.exe编译器作为类clang 的使用方式来编译。

也就是说,在指定编译器为c mips.exe的同时,告诉xmake,它跟clang 用法和参数选项基本相同。

设置c/c 连接器

如果还要继续细分选择链接器,则继续追加相关链接器选项,例如:

$ xmake f -p linux --sdk=/user/toolsdk --ld=armv7-linux-clang   --sh=armv7-linux-clang   --ar=armv7-linux-ar

ld指定可执行程序链接器,sh指定共享库程序链接器,ar指定生成静态库的归档器。

注:如果存在LD/SH/AR环境变量的话,会优先使用当前环境变量中指定的值。

设置头文件和库搜索目录

如果sdk里面还有额外的其他include/lib目录不在标准的结构中,导致交叉编译找不到库和头文件,那么我们可以通过--includedirs--linkdirs来追加搜索路径,然后通过--links添加额外的链接库。

$ xmake f -p linux --sdk=/usr/toolsdk --includedirs=/usr/toolsdk/xxx/include --linkdirs=/usr/toolsdk/xxx/lib --links=pthread

注:如果要指定多个搜索目录,可以通过:或者;来分割,也就是不同主机平台的路径分隔符,linux/macos下用:,win下用;

设置编译和链接选项

我们也可以根据实际情况通过--cflags, --cxxflags--ldflags--shflags--arflags额外配置一些编译和链接选项。

  • cflags: 指定c编译参数
  • cxxflags:指定c 编译参数
  • cxflags: 指定c/c 编译参数
  • asflags: 指定汇编器编译参数
  • ldflags: 指定可执行程序链接参数
  • shflags: 指定动态库程序链接参数
  • arflags: 指定静态库的生成参数

例如:

$ xmake f -p linux --sdk=/usr/toolsdk --cflags="-DTEST -I/xxx/xxx" --ldflags="-lpthread"

mingw工具链

使用mingw工具链编译,其实也是交叉编译,但是由于这个比较常用,xmake专门增加了一个mingw的平台来快速处理使用mingw工具链的编译。

因此,xmake对mingw的工具链检测会更加完善,在macos下,基本上连sdk路径都不需要配置,也能直接检测到,只需要切到mingw平台编译即可。

$ xmake f -p mingw
$ xmake -v
configure
{
    ld = /usr/local/opt/mingw-w64/bin/x86_64-w64-mingw32-g  
    ndk_stdcxx = true
    plat = mingw
    mingw = /usr/local/opt/mingw-w64
    buildir = build
    arch = x86_64
    xcode = /Applications/Xcode.app
    mode = release
    cxx = /usr/local/opt/mingw-w64/bin/x86_64-w64-mingw32-gcc
    cross = x86_64-w64-mingw32-
    theme = default
    kind = static
    ccache = true
    host = macosx
    clean = true
    bin = /usr/local/opt/mingw-w64/bin
}
[  0%]: ccache compiling.release src/main.cpp
/usr/local/bin/ccache /usr/local/opt/mingw-w64/bin/x86_64-w64-mingw32-gcc -c -fvisibility=hidden -O3 -m64 -o build/.objs/test/mingw/x86_64/release/src/main.cpp.obj src/main.cpp
[100%]: linking.release test.exe
/usr/local/opt/mingw-w64/bin/x86_64-w64-mingw32-g   -o build/mingw/x86_64/release/test.exe build/.objs/test/mingw/x86_64/release/src/main.cpp.obj -s -fvisibility=hidden -m64
build ok!

这里我们追加了-v参数,看了下详细的编译命令和检测到的mingw工具链配置值,其中cross被自动检测为:x86_64-w64-mingw32-,bin目录也被自动检测到了,还有编译器和链接器也是。

尽管在linux/win上还没法自动检测到sdk路径,我们也可以手动指定sdk路径,需要注意的是,xmake为mingw专门提供了一个--mingw=参数用来指定mingw的工具链根目录,其效果跟--sdk=是一样的,但是它可以作为全局配置被设置。

$ xmake g --mingw=/home/mingwsdk
$ xmake f -p mingw
$ xmake

我们通过xmake g/global命令设置--mingw根目录到全局配置后,之后每次编译和切换编译平台,就不用额外指定mingw工具链路径了,方便使用。

另外,其他的工具链配置参数用法,跟上文描述的没什么区别,像--cross, --bin=等都可以根据实际的环境需要,自己控制是否需要额外追加配置来适配自己的mingw工具链。

项目描述设置

set_toolchain

如果觉得每次通过命令行配置比较繁琐,有些配置可以通过在xmake.lua预先配置好,来简化命令配置,比如编译器的指定,就可以通过set_toolchain来对每个target单独设置。

target("test")
    set_kind("binary")
    set_toolchain("cxx", "clang")
    set_toolchain("ld", "clang  ")

强制test目标的编译器和链接器使用clang编译器,或者指定交叉编译工具链中的编译器名或者路径。

set_config

我们也可以通过set_config来设置在xmake f/config命令中的每个配置参数的默认值,这是个全局api,对每个target都会生效。

set_config("cflags", "-DTEST")
set_config("sdk", "/home/xxx/tooksdk")
set_config("cc", "gcc")
set_config("ld", "g  ")

不过,我们还是可以通过xmake f --name=value的方式,去修改xmake.lua中的默认配置。

自定义编译平台

如果某个交叉工具链编译后目标程序有对应的平台需要指定,并且需要在xmake.lua里面根据不同的交叉编译平台,还需要配置一些额外的编译参数,那么上文的-p cross设置就不能满足需求了。

其实,-p/--plat=参数也可以设置为其他自定义的值,只需要跟is_plat保持对应关系就可以,所有非内置平台名,都会默认采用交叉编译模式,例如:

$ xmake f -p myplat --sdk=/usr/local/arm-xxx-gcc/
$ xmake

我们传入了myplat自定义平台名,作为当前交叉工具链的编译平台,然后xmake.lua里面我们对这个平台,配置下对应的设置:

if is_plat("myplat") then
    add_defines("TEST")
end

通过这种方式,xmake就可以很方便的扩展处理各种编译平台,用户可以自己扩展支持freebsd, netbsd, sunos等其他各种平台的交叉编译。

我摘录一段之前移植libuv写的交叉编译的配置,直观感受下:

-- for gragonfly/freebsd/netbsd/openbsd platform
if is_plat("gragonfly", "freebsd", "netbsd", "openbsd") then
    add_files("src/unix/bsd-ifaddrs.c")
    add_files("src/unix/freebsd.c")
    add_files("src/unix/kqueue.c")
    add_files("src/unix/posix-hrtime.c")
    add_headerfiles("(include/uv-bsd.h)")
end 

-- for sunos platform
if is_plat("sunos") then
     add_files("src/unix/no-proctitle.c")
    add_files("src/unix/sunos.c")
    add_defines("__EXTENSIONS_", "_XOPEN_SOURCE=600")
    add_headerfiles("(include/uv-sunos.h)")
end

然后,我们就可以切换这些平台来编译:

$ xmake f -p [gragonfly|freebsd|netbsd|openbsd|sunos] --sdk=/home/arm-xxx-gcc/
$ xmake

另外,内置的linux平台也是支持交叉编译的哦,如果不想配置其他平台名,统一作为linux平台来交叉编译,也是可以的。

$ xmake f -p linux --sdk=/usr/local/arm-xxx-gcc/
$ xmake

只要设置了--sdk=等参数,就会启用linux平台的交叉编译模式。

个人主页

个人项目

你可能感兴趣的:(xmake,tbox,跨平台)