Linux 进程中 Stop, Park, Freeze

http://kernel.meizu.com/linux-process-stop.html

在调试内核的时候,经常会碰到几个相近的概念:进程 stop、进程 park、进程 freeze。这几个名词看起来都是停止进程,那么他们之间的区别和应用场景在分别是什么呢?下面就来分析一番。

本文的代码分析基于 Linux kernel 3.18.22,最好的学习方法还是 “RTFSC”

1. 进程 stop

进程 stop 分成两种:用户进程 stop 和内核进程 stop。

用户进程 stop 可以通过给进程发送 STOP 信号来实现,可以参考“Linux Signal”这一篇的描述。但是对内核进程来说不会响应信号,如果碰到需要 stop 内核进程的场景怎么处理?比如:我们在设备打开的时候创建了内核处理进程,在设备关闭的时候需要 stop 内核进程。

Linux 实现了一套 kthread_stop() 的机制来实现内核进程 stop。

1.1 内核进程的创建

内核进程创建过程,是理解本篇的基础。

可以看到 kthread_create() 并不是自己去创建内核进程,而是把创建任务推送给 kthreadd()进程执行。

kthreadd() -> create_kthread() -> kernel_thread() 创建的新进程也不是直接使用用户的函数 threadfn(),而是创建通用函数 kthread()kthread() 再来调用 threadfn()

  • kernel/kthread.c:

Linux 进程中 Stop, Park, Freeze_第1张图片kthread_create

1.2 内核进程的 stop

如果内核进程需要支持 kthread_stop(),需要根据以下框架来写代码。用户在主循环中调用 kthread_should_stop() 来判断当前 kthread 是否需要 stop,如果被 stop 则退出循环。

这种代码为什么不做到通用代码 kthread() 中?这应该是和 Linux 的设计思想相关的。Linux 运行内核态的策略比较灵活,而对用户态的策略更加严格统一。

Linux 进程中 Stop, Park, Freeze_第2张图片kthread_should_stop

kthread_should_stop() 和 kthread_stop() 的代码实现:

  • kernel/kthread.c:
  • kthread_should_stop()/kthread_stop()

bool kthread_should_stop(void)
{
	// (1) 判断进程所在 kthread 结构中的 KTHREAD_SHOULD_STOP 是否被置位
	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
}

int kthread_stop(struct task_struct *k)
{
	struct kthread *kthread;
	int ret;

	trace_sched_kthread_stop(k);

	get_task_struct(k);
	kthread = to_live_kthread(k);
	if (kthread) {
		// (2) 置位进程所在 kthread 结构中的 KTHREAD_SHOULD_STOP
		set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
		// (3) unpark & wake_up 进程来响应 stop 信号
		__kthread_unpark(k, kthread);
		wake_up_process(k);
		wait_for_completion(&kthread->exited);
	}
	ret = k->exit_code;
	put_task_struct(k);

	trace_sched_kthread_stop_ret(ret);
	return ret;
}

2. 进程 park

smpboot_register_percpu_thread() 用来创建 per_cpu 内核进程,所谓的 per_cpu 进程是指需要在每个 online cpu 上创建线程。比如执行 stop_machine() 中 cpu 同步操作的 migration 进程:

shell@:/ $ ps | grep migration
root      10    2     0      0     smpboot_th 0000000000 S migration/0
root      11    2     0      0     smpboot_th 0000000000 S migration/1
root      15    2     0      0     __kthread_ 0000000000 R migration/2
root      19    2     0      0     __kthread_ 0000000000 R migration/3
root      207   2     0      0     __kthread_ 0000000000 R migration/8
root      247   2     0      0     __kthread_ 0000000000 R migration/4
root      251   2     0      0     __kthread_ 0000000000 R migration/5
root      265   2     0      0     __kthread_ 0000000000 R migration/6
root      356   2     0      0     __kthread_ 0000000000 R migration/7
root      2165  2     0      0     __kthread_ 0000000000 R migration/9

问题来了,既然 per_cpu 进程是和 cpu 绑定的,那么在 cpu hotplug 的时候,进程需要相应的 disable 和 enable。实现的方法可以有多种:

  • 动态的销毁和创建线程。缺点是开销比较大。
  • 设置进程的 cpu 亲和力 set_cpus_allowed_ptr()。缺点是进程绑定的 cpu 如果被 down 掉,进程会迁移到其他 cpu 继续执行。

为了克服上述方案的缺点,适配 per_cpu 进程的 cpu hotplug 操作,设计了 kthread_park()/kthread_unpark() 机制。

2.1 smpboot_register_percpu_thread()

per_cpu 进程从代码上看,实际也是调用 kthread_create() 来创建的。

  • kernel/smpboot.c:
  • kernel/kthread.c:

Linux 进程中 Stop, Park, Freeze_第3张图片smpboot_register_percpu_thread

我们可以看到 smpboot_register 又增加了一层封装:kthread() -> smpboot_thread_fn() -> ht->thread_fn(),这种封装的使用可以参考 cpu_stop_threads。

  • kernel/stop_machine.c:
static struct smp_hotplug_thread cpu_stop_threads = {
	.store			= &cpu_stopper_task,
	.thread_should_run	= cpu_stop_should_run,
	.thread_fn		= cpu_stopper_thread,
	.thread_comm		= "migration/%u",
	.create			= cpu_stop_create,
	.setup			= cpu_stop_unpark,
	.park			= cpu_stop_park,
	.pre_unpark		= cpu_stop_unpark,
	.selfparking		= true,
};

static int __init cpu_stop_init(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);

		spin_lock_init(&stopper->lock);
		INIT_LIST_HEAD(&stopper->works);
	}

	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
	stop_machine_initialized = true;
	return 0;
}

我们可以看到 smpboot_thread_fn() 循环中实现了对 park 的支持,具体实现 kthread_should_park()kthread_parkme()kthread_park()kthread_unpark() 的代码分析:

  • kernel/kthread.c:
bool kthread_should_park(void)
{
	// (1) 判断进程所在 kthread 结构中的 KTHREAD_SHOULD_PARK 是否被置位
	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(current)->flags);
}

void kthread_parkme(void)
{
	__kthread_parkme(to_kthread(current));
}
| 
static void __kthread_parkme(struct kthread *self)
{
	// (2) 如果当前进程的 KTHREAD_SHOULD_PARK 标志被置位 ,
	// 将当前进程进入 TASK_PARKED 的阻塞状态。
	// 如果 KTHREAD_SHOULD_PARK 不清除,
	// 就算被 wake_up 唤醒还是会循环进入 TASK_PARKED 的阻塞状态。
	__set_current_state(TASK_PARKED);
	while (test_bit(KTHREAD_SHOULD_PARK, &self->flags)) {
		if (!test_and_set_bit(KTHREAD_IS_PARKED, &self->flags))
			complete(&self->parked);
		schedule();
		__set_current_state(TASK_PARKED);
	}
	clear_bit(KTHREAD_IS_PARKED, &self->flags);
	__set_current_state(TASK_RUNNING);
}

int kthread_park(struct task_struct *k)
{
	struct kthread *kthread = to_live_kthread(k);
	int ret = -ENOSYS;

	if (kthread) {
		// (3) 设置 KTHREAD_IS_PARKED 标志位,并且唤醒进程进入 park 状态
		if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
			set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
			if (k != current) {
				wake_up_process(k);
				wait_for_completion(&kthread->parked);
			}
		}
		ret = 0;
	}
	return ret;
}

void kthread_unpark(struct task_struct *k)
{
	struct kthread *kthread = to_live_kthread(k);

	if (kthread)
		__kthread_unpark(k, kthread);
}
| 
static void __kthread_unpark(struct task_struct *k, struct kthread *kthread)
{
	// (4) 清除 KTHREAD_IS_PARKED 标志位
	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
	/*
	 * We clear the IS_PARKED bit here as we don't wait
	 * until the task has left the park code. So if we'd
	 * park before that happens we'd see the IS_PARKED bit
	 * which might be about to be cleared.
	 */
	// 如果进程已经被 park,并且 wake_up 唤醒进程
	if (test_and_clear_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
		// 如果是 per_cpu 进程,重新绑定进程 cpu
		if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
			__kthread_bind(k, kthread->cpu, TASK_PARKED);
		wake_up_state(k, TASK_PARKED);
	}
}

2.2 cpu hotplug 支持

我们前面说到 park 机制的主要目的是为了 per_cpu 进程支持 cpu hotplug,具体怎么响应热插拔事件呢?

  • kernel/smpboot.c:

Linux 进程中 Stop, Park, Freeze_第4张图片park_hotplug

3. 进程 freeze

在系统进入 suspend 的时候,会尝试冻住一些进程,以避免一些进程无关操作影响系统的 suspend 状态。主要的流程如下:

  • kernel/power/suspend.c:

Linux 进程中 Stop, Park, Freeze_第5张图片suspend_freeze_processes

这 suspend_freeze 里面判断当前在那个阶段,有 3 个重要的变量:

  • system_freezing_cnt - >0 表示系统全局的 freeze 开始;
  • pm_freezing - =true 表示用户进程 freeze 开始;
  • pm_nosig_freezing - =true 表示内核进程 freeze 开始;

具体代码分析如下:

  • kernel/power/process.c:
  • kernel/freezer.c:
  • suspend_freeze_processes() -> freeze_processes() -> try_to_freeze_tasks() -> freeze_task()

int freeze_processes(void)
{
	int error;
	int oom_kills_saved;

	error = __usermodehelper_disable(UMH_FREEZING);
	if (error)
		return error;

	// (1) 置位 PF_SUSPEND_TASK,确保当前进程不会被 freeze
	/* Make sure this task doesn't get frozen */
	current->flags |= PF_SUSPEND_TASK;

	// (2) 使用全局 freeze 标志 system_freezing_cnt
	if (!pm_freezing)
		atomic_inc(&system_freezing_cnt);

	pm_wakeup_clear();
	printk("Freezing user space processes ... ");
	// (3) 使用用户进程 freeze 标志 pm_freezing
	pm_freezing = true;
	oom_kills_saved = oom_kills_count();
	// (4) freeze user_only 进程
	// 判断进程是否可以被 freeze,唤醒进程 freeze 自己
	error = try_to_freeze_tasks(true);
	if (!error) {
		__usermodehelper_set_disable_depth(UMH_DISABLED);
		oom_killer_disable();

		/*
		 * There might have been an OOM kill while we were
		 * freezing tasks and the killed task might be still
		 * on the way out so we have to double check for race.
		 */
		if (oom_kills_count() != oom_kills_saved &&
		    !check_frozen_processes()) {
			__usermodehelper_set_disable_depth(UMH_ENABLED);
			printk("OOM in progress.");
			error = -EBUSY;
		} else {
			printk("done.");
		}
	}
	printk("\n");
	BUG_ON(in_atomic());

	if (error)
		thaw_processes();
	return error;
}
| 
static int try_to_freeze_tasks(bool user_only)
{
	struct task_struct *g, *p;
	unsigned long end_time;
	unsigned int todo;
	bool wq_busy = false;
	struct timeval start, end;
	u64 elapsed_msecs64;
	unsigned int elapsed_msecs;
	bool wakeup = false;
	int sleep_usecs = USEC_PER_MSEC;
#ifdef CONFIG_PM_SLEEP
	char suspend_abort[MAX_SUSPEND_ABORT_LEN];
#endif

	do_gettimeofday(&start);

	end_time = jiffies + msecs_to_jiffies(freeze_timeout_msecs);

	// (4.1) 如果是 kernel freeze,
	// 停工有 WQ_FREEZABLE 标志的 workqueue
	// 将 wq 的 pwq->max_active 设置成 0,新的 work 不能被执行
	if (!user_only)
		freeze_workqueues_begin();

	while (true) {
		todo = 0;
		read_lock(&tasklist_lock);
		// (4.2) 对每个进程执行 freeze_task()
		for_each_process_thread(g, p) {
			if (p == current || !freeze_task(p))
				continue;

			if (!freezer_should_skip(p))
				todo++;
		}
		read_unlock(&tasklist_lock);

		// (4.3) 如果是 kernel freeze,
		// 判断停工的 workqueue 中残留的 work 有没有执行完
		if (!user_only) {
			wq_busy = freeze_workqueues_busy();
			todo += wq_busy;
		}

		if (!todo || time_after(jiffies, end_time))
			break;

		if (pm_wakeup_pending()) {
#ifdef CONFIG_PM_SLEEP
			pm_get_active_wakeup_sources(suspend_abort,
				MAX_SUSPEND_ABORT_LEN);
			log_suspend_abort_reason(suspend_abort);
#endif
			wakeup = true;
			break;
		}

		/*
		 * We need to retry, but first give the freezing tasks some
		 * time to enter the refrigerator.  Start with an initial
		 * 1 ms sleep followed by exponential backoff until 8 ms.
		 */
		usleep_range(sleep_usecs / 2, sleep_usecs);
		if (sleep_usecs < 8 * USEC_PER_MSEC)
			sleep_usecs *= 2;
	}

	do_gettimeofday(&end);
	elapsed_msecs64 = timeval_to_ns(&end) - timeval_to_ns(&start);
	do_div(elapsed_msecs64, NSEC_PER_MSEC);
	elapsed_msecs = elapsed_msecs64;

	if (wakeup) {
		printk("\n");
		printk(KERN_ERR "Freezing of tasks aborted after %d.%03d seconds",
		       elapsed_msecs / 1000, elapsed_msecs % 1000);
	} else if (todo) {
		printk("\n");
		printk(KERN_ERR "Freezing of tasks failed after %d.%03d seconds"
		       " (%d tasks refusing to freeze, wq_busy=%d):\n",
		       elapsed_msecs / 1000, elapsed_msecs % 1000,
		       todo - wq_busy, wq_busy);

			read_lock(&tasklist_lock);
			for_each_process_thread(g, p) {
				if (p != current && !freezer_should_skip(p)
				    && freezing(p) && !frozen(p))
					sched_show_task(p);
			}
			read_unlock(&tasklist_lock);
	} else {
		printk("(elapsed %d.%03d seconds) ", elapsed_msecs / 1000,
			elapsed_msecs % 1000);
	}

	return todo ? -EBUSY : 0;
}
|| 
bool freeze_task(struct task_struct *p)
{
	unsigned long flags;

	/*
	 * This check can race with freezer_do_not_count, but worst case that
	 * will result in an extra wakeup being sent to the task.  It does not
	 * race with freezer_count(), the barriers in freezer_count() and
	 * freezer_should_skip() ensure that either freezer_count() sees
	 * freezing == true in try_to_freeze() and freezes, or
	 * freezer_should_skip() sees !PF_FREEZE_SKIP and freezes the task
	 * normally.
	 */
	if (freezer_should_skip(p))
		return false;

	spin_lock_irqsave(&freezer_lock, flags);
	// (4.2.1) 检查当前进程是否可以被 freeze,
	// 或者是否已经被 freeze
	if (!freezing(p) || frozen(p)) {
		spin_unlock_irqrestore(&freezer_lock, flags);
		return false;
	}

	// (4.2.2) 如果是用户进程,伪造一个 signal 发送给进程
	if (!(p->flags & PF_KTHREAD))
		fake_signal_wake_up(p);
	// (4.2.3) 如果是内核进程,wake_up 内核进程
	else
		wake_up_state(p, TASK_INTERRUPTIBLE);

	spin_unlock_irqrestore(&freezer_lock, flags);
	return true;
}
||| 
static inline bool freezing(struct task_struct *p)
{ 具体代码分析如下:

- kernel/power/process.c:
- kernel/freezer.c:
	// 如果 system_freezing_cnt 为 0,说明全局 freeze 还没有开始
	if (likely(!atomic_read(&system_freezing_cnt)))
		return false;
	return freezing_slow_path(p);
}
|||| 
bool freezing_slow_path(struct task_struct *p)
{
	// (PF_NOFREEZE | PF_SUSPEND_TASK) 当前进程不能被 freeze
	if (p->flags & (PF_NOFREEZE | PF_SUSPEND_TASK))
		return false;

	if (test_thread_flag(TIF_MEMDIE))
		return false;

	// 如果 pm_nosig_freezing 为 true,内核进程 freeze 已经开始,
	// 当前进程可以被 freeze
	if (pm_nosig_freezing || cgroup_freezing(p))
		return true;

	// 如果 pm_freezing 为 true,且当前进程为用户进程
	// 当前进程可以被 freeze
	if (pm_freezing && !(p->flags & PF_KTHREAD))
		return true;

	return false;
}

3.1 用户进程 freeze

freeze 用户态的进程利用了 signal 机制,系统 suspend 使能了 suspend 以后,调用 fake_signal_wake_up() 伪造一个信号唤醒进程,进程在 ret_to_user() -> do_notify_resume() -> do_signal() -> get_signal() -> try_to_freeze() 中 freeze 自己。

具体代码分析如下:

  • kernel/freezer.c:
static inline bool try_to_freeze(void)
{
	if (!(current->flags & PF_NOFREEZE))
		debug_check_no_locks_held();
	return try_to_freeze_unsafe();
}
| 
static inline bool try_to_freeze_unsafe(void)
{
	might_sleep();
	// 当前进程是否可以被 freeze
	if (likely(!freezing(current)))
		return false;
	// 调用 __refrigerator() freeze 当前进程
	return __refrigerator(false);
}
|| 
bool __refrigerator(bool check_kthr_stop)
{
	/* Hmm, should we be allowed to suspend when there are realtime
	   processes around? */
	bool was_frozen = false;
	long save = current->state;

	pr_debug("%s entered refrigerator\n", current->comm);

	for (;;) {
		// (1) 设置当前进程进入 TASK_UNINTERRUPTIBLE 阻塞状态
		set_current_state(TASK_UNINTERRUPTIBLE);

		spin_lock_irq(&freezer_lock);
		// (2) 设置已经 freeze 标志 PF_FROZEN
		current->flags |= PF_FROZEN;
		// (3) 如果当前进程已经不是 freeze 状态,
		// 退出 freeze
		if (!freezing(current) ||
		    (check_kthr_stop && kthread_should_stop()))
			current->flags &= ~PF_FROZEN;
		spin_unlock_irq(&freezer_lock);

		if (!(current->flags & PF_FROZEN))
			break;
		was_frozen = true;
		schedule();
	}

	pr_debug("%s left refrigerator\n", current->comm);

	/*
	 * Restore saved task state before returning.  The mb'd version
	 * needs to be used; otherwise, it might silently break
	 * synchronization which depends on ordered task state change.
	 */
	set_current_state(save);

	return was_frozen;
}

3.2 内核进程 freeze

内核进程对 freeze 的响应,有两个问题:

  • wake_up_state(p, TASK_INTERRUPTIBLE) 能唤醒哪些内核进程。
  • 内核进程怎么样来响应 freeze 状态,怎么样来 freeze 自己。

如果进程阻塞在信号量、mutex 等内核同步机制上,wake_up_state 并不能解除阻塞。因为这些机制都有 while(1) 循环来判断条件,是否成立,不成立只是简单的唤醒随即又会进入阻塞睡眠状态。

  • kernel/locking/mutex.c:
  • mutex_lock() -> __mutex_lock_common()
__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
		    struct lockdep_map *nest_lock, unsigned long ip,
		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
{

	for (;;) {
		/*
		 * Lets try to take the lock again - this is needed even if
		 * we get here for the first time (shortly after failing to
		 * acquire the lock), to make sure that we get a wakeup once
		 * it's unlocked. Later on, if we sleep, this is the
		 * operation that gives us the lock. We xchg it to -1, so
		 * that when we release the lock, we properly wake up the
		 * other waiters. We only attempt the xchg if the count is
		 * non-negative in order to avoid unnecessary xchg operations:
		 */
		// (1) 如果 mutex_lock 条件成立,才退出
		if (atomic_read(&lock->count) >= 0 &&
		    (atomic_xchg(&lock->count, -1) == 1))
			break;

		// (2) 如果如果有信号阻塞,也退出
		/*
		 * got a signal? (This code gets eliminated in the
		 * TASK_UNINTERRUPTIBLE case.)
		 */
		if (unlikely(signal_pending_state(state, task))) {
			ret = -EINTR;
			goto err;
		}

		if (use_ww_ctx && ww_ctx->acquired > 0) {
			ret = __mutex_lock_check_stamp(lock, ww_ctx);
			if (ret)
				goto err;
		}

		// (3) 否则继续进入阻塞休眠状态
		__set_task_state(task, state);

		/* didn't get the lock, go to sleep: */
		spin_unlock_mutex(&lock->wait_lock, flags);
		schedule_preempt_disabled();
		spin_lock_mutex(&lock->wait_lock, flags);
	}

}

所以 wake_up_state() 只能唤醒这种简单阻塞的内核进程,而对于阻塞在内核同步机制上是无能无力的:

void user_thread()
{
	while(1)
	{
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule();

	}
}

内核进程响应 freeze 操作,也必须显式的调用 try_to_freeze() 或者 kthread_freezable_should_stop() 来 freeze 自己:

void user_thread()
{
	while (!kthread_should_stop()) {

		try_to_freeze();

	}
}

所以从代码逻辑上看内核进程 freeze,并不会 freeze 所有内核进程,只 freeze 了 2 部分:一部分是设置了 WQ_FREEZABLE 标志的 workqueue,另一部分是内核进程主动调用 try_to_freeze() 并且在架构上设计的可以响应 freeze。



附:

static int
kthread(void *vp)
{
struct ktstate *k;
DECLARE_WAITQUEUE(wait, current);
int more;
k = vp;
current->flags |= PF_NOFREEZE;
set_user_nice(current, -10); //内核线程默认优先级
complete(&k->rendez);/* tell spawner we're running */
do {
spin_lock_irq(k->lock);
more = k->fn();
if (!more) {
add_wait_queue(k->waitq, &wait);
__set_current_state(TASK_INTERRUPTIBLE);
}
spin_unlock_irq(k->lock);
if (!more) {
schedule();
remove_wait_queue(k->waitq, &wait);
} else
cond_resched();
} while (!kthread_should_stop());
complete(&k->rendez);/* tell spawner we're stopping */
return 0;
}


你可能感兴趣的:(Linux内核_学习笔记)