百度顶会论文复现(2):GAN综述

本节课主要是对GAN的发展进行了介绍,包括基本原理,训练方法,存在问题,改进以及应用场景等。实践作业则为手写数字生成。课程地址为:https://aistudio.baidu.com/aistudio/education/preview/493290。

文章目录

    • 1.什么是GAN?
    • 2.GAN的基本原理和改进
      • 2.1 GAN的基本原理
      • 2.2 GAN的训练
      • 2.3 GAN存在的问题与改进

1.什么是GAN?

首先是介绍什么是GAN,本质上是通过对抗的方式去学习数据分布的生成式模型,核心思想是:生成网络G和对抗网络D不断博弈,达到生成真实数据的目的
百度顶会论文复现(2):GAN综述_第1张图片


2.GAN的基本原理和改进

自从2014年GAN首次被提出来之后,其发展进程可以归结为以下脉络:
百度顶会论文复现(2):GAN综述_第2张图片


2.1 GAN的基本原理

GAN的思想是来自于博弈论中的零和游戏,生活中一个常见的例子就是制造假钞和验钞机之间的关系。
百度顶会论文复现(2):GAN综述_第3张图片 百度顶会论文复现(2):GAN综述_第4张图片

2.2 GAN的训练

机器学习或深度学习中,要想训练模型,都要找到其目标函数,GAN的目标函数如下,分为两个方面:

  • 判别器希望自身的奖励最大化
  • 生成器希望判别器的奖励最小化

百度顶会论文复现(2):GAN综述_第5张图片

训练方法如下,这里需要训练生成器和判别器,而两个又相互依赖,因此训练时要锁定一个,训练另一个。

百度顶会论文复现(2):GAN综述_第6张图片 百度顶会论文复现(2):GAN综述_第7张图片

GAN的训练细节和可视化如下:
百度顶会论文复现(2):GAN综述_第8张图片 百度顶会论文复现(2):GAN综述_第9张图片


2.3 GAN存在的问题与改进

GAN虽然功能很强大,但是也存在一些问题:不收敛,模式坍塌。
百度顶会论文复现(2):GAN综述_第10张图片百度顶会论文复现(2):GAN综述_第11张图片百度顶会论文复现(2):GAN综述_第12张图片

下面介绍了对应的解决方案:对目标函数进行改进,对网络结构进行改进,
百度顶会论文复现(2):GAN综述_第13张图片
百度顶会论文复现(2):GAN综述_第14张图片
百度顶会论文复现(2):GAN综述_第15张图片
最后介绍一下WGAN:
百度顶会论文复现(2):GAN综述_第16张图片
百度顶会论文复现(2):GAN综述_第17张图片


最后是使用GAN生成手写数字,这部分网上资料比较多,代码就不贴了。

你可能感兴趣的:(深度学习,百度顶会论文复现)