JZOJ ???? dexterity

          • 没有传送门
          • 题目大意
            • 样例输入
            • 样例输出
            • 样例解释(原题没有)
          • 考场上的思路
          • 参考代码

没有传送门
题目大意

A 和 B 猜拳,要猜 n n 轮。对于第 i i 轮,获胜分数加 wi w i ,平局分数加 di d i ,失败分数不变。A 知道 B 的出拳顺序是一个给定串 s s 的循环同构串,求 A 用最优策略在最坏情况下能得多少分。

n105 n ≤ 10 5 w,dint w , d ∈ int

样例输入
5
rrsrr
3 1
3 1
3 1
3 1
3 1
样例输出
12
样例解释(原题没有)

A 一直出布,肯定能拿 12 12 分。可以证明不存在更优的出拳方法。

考场上的思路

考虑 Special Instance,当 s s 只存在一个字符时该怎么做。显然只要一直出能够获胜的就可以了。

注意到,当比赛进行到足够长,使得当前 B 已经出的拳仅为一个循环同构串的前缀时,我们就相当于知道了接下来 B 怎么出拳,也就能一直获胜了。当然也可能永远不满足这个条件,却依然能够一直获胜(比如 s s 只存在一个字符时)。

不妨将所有循环同构串建成一棵 Trie。发现,每个串的后缀对应在 Trie 上的一条链就是我们上面说的能够一直获胜的情况。那不能获胜的情况呢?这就很自然地想到了树形 DP。对于一个点,我们枚举它出石头剪刀还是布,然后计算对方出某个时的答案。由于是在最坏情况,因此取最小值;由于要取最优决策,因此在三个决策中取最大值。时间复杂度 O(n2) O ( n 2 )

然而我忘记把串倍增(准确地说是我在最后十分钟想到了这个做法,但是忘了我把之前倍增串的代码删了),爆零垫底了。

接下来显然只需要把 Trie 改成后缀树就可以了。

参考代码
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
typedef long long LL;
typedef unsigned long long ULL;
using std::cin;
using std::cout;
using std::endl;
typedef LL INT_PUT;
INT_PUT readIn()
{
    INT_PUT a = 0; bool positive = true;
    char ch = getchar();
    while (!(ch == '-' || std::isdigit(ch))) ch = getchar();
    if (ch == '-') { positive = false; ch = getchar(); }
    while (std::isdigit(ch)) { a = a * 10 - (ch - '0'); ch = getchar(); }
    return positive ? -a : a;
}
void printOut(INT_PUT x)
{
    char buffer[20]; int length = 0;
    if (x < 0) putchar('-'); else x = -x;
    do buffer[length++] = -(x % 10) + '0'; while (x /= 10);
    do putchar(buffer[--length]); while (length);
    putchar('\n');
}

const int maxn = int(1e5) + 5;
int n;
int str[maxn * 2];
int w[maxn], d[maxn];
LL sum[maxn];
int table[3][3] = { { 0, 1, -1 }, { -1, 0, 1 }, { 1, -1, 0 } };

#define RunInstance(x) delete new x
struct brute
{
    struct Trie
    {
        struct Node
        {
            int son[3];
            Node() : son() {}
        };
        std::vector nodes;
        Trie() : nodes(1) {}
        void insert(int st)
        {
            int cnt = 0;
            for (int i = 0; i < n; i++)
            {
                if (!nodes[cnt].son[str[st + i]])
                {
                    nodes[cnt].son[str[st + i]] = nodes.size();
                    nodes.push_back(Node());
                }
                cnt = nodes[cnt].son[str[st + i]];
            }
        }
        LL DP(int node = 0, int depth = 1)
        {
            if (depth == n + 1) return 0;
            LL ret = 0;
            LL temp[3] = {};
            for (int i = 0; i < 3; i++)
                if (nodes[node].son[i])
                    temp[i] = DP(nodes[node].son[i], depth + 1);

            for (int i = 0; i < 3; i++)
            {
                LL min = LLONG_MAX;
                for (int j = 0; j < 3; j++)
                {
                    if (nodes[node].son[j])
                    {
                        int accum = 0;
                        switch (table[i][j])
                        {
                        case 1: accum = w[depth]; break;
                        case 0: accum = d[depth]; break;
                        case -1: accum = 0; break;
                        }
                        min = std::min(min, temp[j] + accum);
                    }
                }
                ret = std::max(ret, min);
            }
            return ret;
        }
    } trie;

    brute()
    {
        for (int i = 1; i <= n; i++)
            trie.insert(i);
        printOut(trie.DP());
    }
};
struct work
{
    struct SAM
    {
        struct Node
        {
            int len;
            int link;
            int pos;
            int ch[3];
            Node() : len(), link(), ch() {}
        } nodes[maxn * 4];
        int size;
        int last;
        SAM() : size(), G() { nodes[last = size++].link = -1; }
        void extend(int x, int pos)
        {
            int cur = size++;
            nodes[cur].len = nodes[last].len + 1;
            nodes[cur].pos = pos;
            int p = last;
            last = cur;

            for (; ~p && !nodes[p].ch[x]; p = nodes[p].link)
                nodes[p].ch[x] = cur;
            if (!~p)
            {
                nodes[cur].link = 0;
                return;
            }
            int q = nodes[p].ch[x];
            if (nodes[p].len + 1 == nodes[q].len)
            {
                nodes[cur].link = q;
                return;
            }
            int clone = size++;
            nodes[clone] = nodes[q];
            nodes[clone].pos = pos;
            nodes[clone].len = nodes[p].len + 1;
            nodes[cur].link = nodes[q].link = clone;
            for (; ~p && nodes[p].ch[x] == q; p = nodes[p].link)
                nodes[p].ch[x] = clone;
        }

        int G[maxn * 4][3];
        void build()
        {
            for (int i = 1; i < size; i++)
                G[nodes[i].link][str[nodes[i].pos + nodes[nodes[i].link].len]] = i;
        }
        LL DP(int node = 0, int depth = 0)
        {
            LL base = 0;
            if (node)
            {
                int length = nodes[node].len - nodes[nodes[node].link].len;
                if (depth >= n)
                    return sum[n] - sum[depth - length + 1];
                else
                    base = sum[depth] - sum[depth - length + 1];
            }
            LL temp[3] = {};
            for (int i = 0; i < 3; i++)
                if (G[node][i])
                    temp[i] = DP(G[node][i], depth + nodes[G[node][i]].len - nodes[node].len);

            LL ret = 0;
            for (int i = 0; i < 3; i++)
            {
                LL min = LLONG_MAX;
                for (int j = 0; j < 3; j++)
                {
                    if (G[node][j])
                    {
                        int accum = 0;
                        switch (table[i][j])
                        {
                        case 1: accum = w[depth + 1]; break;
                        case 0: accum = d[depth + 1]; break;
                        case -1: accum = 0; break;
                        }
                        min = std::min(min, temp[j] + accum);
                    }
                }
                ret = std::max(ret, min);
            }
            return ret + base;
        }
    } sam;

    work()
    {
        for (int i = n << 1; i; i--)
            sam.extend(str[i], i);
        sam.build();
        printOut(sam.DP());
    }
};

bool checkSame()
{
    std::vector<int> temp(str + 1, str + 1 + n);
    return std::unique(temp.begin(), temp.end()) - temp.begin() == 1;
}
void run()
{
    n = readIn();
    for (int i = 1; i <= n; i++)
    {
        char ch = getchar();
        while (!std::isalpha(ch)) ch = getchar();
        if (ch == 'r') str[i] = 0;
        else if (ch == 's') str[i] = 1;
        else if (ch == 'p') str[i] = 2;
    }
    std::memcpy(str + n + 1, str + 1, sizeof(str[0]) * n);
    for (int i = 1; i <= n; i++)
    {
        w[i] = readIn();
        d[i] = readIn();
    }
    for (int i = 1; i <= n; i++)
        sum[i] = w[i];
    for (int i = 2; i <= n; i++)
        sum[i] += sum[i - 1];

    if (checkSame())
    {
        LL ans = 0;
        for (int i = 1; i <= n; i++)
            ans += w[i];
        printOut(ans);
        return;
    }

    if (n <= 1000)
        RunInstance(brute);
    else
        RunInstance(work);
}

int main()
{
#ifndef LOCAL
    freopen("dexterity.in", "r", stdin);
    freopen("dexterity.out", "w", stdout);
#endif
    run();
    return 0;
}

有关后缀自动机转后缀树的内容见专题。

你可能感兴趣的:(OI,NOI,集训,后缀树,DP)