int main(int argc, char **argv)
{
//
if (!strcmp(basename(argv[0]), "ueventd"))
return ueventd_main(argc, argv);
if (!strcmp(basename(argv[0]), "watchdogd"))
return watchdogd_main(argc, argv);
//
umask(0);
mkdir("/dev", 0755);
mkdir("/proc", 0755);
mkdir("/sys", 0755);
mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755");
mkdir("/dev/pts", 0755);
mkdir("/dev/socket", 0755);
mount("devpts", "/dev/pts", "devpts", 0, NULL);
mount("proc", "/proc", "proc", 0, NULL);
mount("sysfs", "/sys", "sysfs", 0, NULL);
....
open_devnull_stdio();
klog_init();
property_init();
....
//
INFO("reading config file\n");
init_parse_config_file("/init.rc");
...
action_for_each_trigger("early-init", action_add_queue_tail);
....
queue_builtin_action(queue_property_triggers_action, "queue_property_triggers");
//
for(;;) {
...
execute_one_command();
restart_processes();
....
nr = poll(ufds, fd_count, timeout);
if (nr <= 0)
continue;
for (i = 0; i < fd_count; i++) {
if (ufds[i].revents & POLLIN) {
if (ufds[i].fd == get_property_set_fd())
handle_property_set_fd();
else if (ufds[i].fd == get_keychord_fd())
handle_keychord();
else if (ufds[i].fd == get_signal_fd())
handle_signal();
}
}
}
return 0;
}
将main函数分为上述4个部分,对应part1到part4,下面分别做具体说明。
open_devnull_stdio();
klog_init();
property_init();
get_hardware_name(hardware, &revision);
process_kernel_cmdline();
union selinux_callback cb;
cb.func_log = log_callback;
selinux_set_callback(SELINUX_CB_LOG, cb);
cb.func_audit = audit_callback;
selinux_set_callback(SELINUX_CB_AUDIT, cb);
selinux_initialize();
/* These directories were necessarily created before initial policy load
* and therefore need their security context restored to the proper value.
* This must happen before /dev is populatedproperty_init(); by ueventd.
*/
restorecon("/dev");
restorecon("/dev/socket");
restorecon("/dev/__properties__");
restorecon_recursive("/sys");
is_charger = !strcmp(bootmode, "charger");
INFO("property init\n");
property_load_boot_defaults();
void open_devnull_stdio(void)
{
int fd;
static const char *name = "/dev/__null__";
if (mknod(name, S_IFCHR | 0600, (1 << 8) | 3) == 0) {
fd = open(name, O_RDWR);
unlink(name);
if (fd >= 0) {
dup2(fd, 0);
dup2(fd, 1);
dup2(fd, 2);
if (fd > 2) {
close(fd);
}
return;
}
}
exit(1);
}
该函数中通过mknode函数创建/dev/__null__设备节点文件,随后打开该文件得到文件描述符fd,然后利用dup2系统调用将文件描述符0、1、2绑定到fd上。这个/dev/__null__看起来很奇怪,Linux系统中的null不是/dev/null么,这两者有什么关系么?
1 char Memory devices
1 = /dev/mem Physical memory access
2 = /dev/kmem Kernel virtual memory access
3 = /dev/null Null device
4 = /dev/port I/O port access
5 = /dev/zero Null byte source
6 = /dev/core OBSOLETE - replaced by /proc/kcore
7 = /dev/full Returns ENOSPC on write
8 = /dev/random Nondeterministic random number gen.
9 = /dev/urandom Faster, less secure random number gen.
10 = /dev/aio Asynchronous I/O notification interface
11 = /dev/kmsg Writes to this come out as printk's
12 = /dev/oldmem Used by crashdump kernels to access
the memory of the kernel that crashed.
可见/dev/__null__与/dev/null的设备号完全相同,它就是/dev/null的马甲。那么为什么init进程不直接创建/dev/null呢? 当前我们还无法回答这个问题,要等到分析/sbin/uevnted的原理时才能明白。
void klog_init(void)
{
static const char *name = "/dev/__kmsg__";
if (klog_fd >= 0) return; /* Already initialized */
if (mknod(name, S_IFCHR | 0600, (1 << 8) | 11) == 0) {
klog_fd = open(name, O_WRONLY);
if (klog_fd < 0)
return;
fcntl(klog_fd, F_SETFD, FD_CLOEXEC);
unlink(name);
}
}
klog_init函数首先检查klog_fd是否已经初始化。首次执行时,调用mknod创建主设备号为1,从设备号为11的设备节点文件/dev/__kmsg__,然后打开该文件将文件描述符保存到变量klog_fd中,接着调用fcntl(klog_fd, F_SETFD, FD_CLOEXEC)句作用是设置当执行execv时,关闭该文件描述符。随后调用unlink来删除/dev/__kmsg__文件,这里比较特殊,具体解释下。
P.S.根据unlink的mannul,(man 2 unlink),其中写道:
If the name was the last link to a file but any processes still have the file open the file will remain in existence until the last file descriptor referring to it is closed.
/dev/__kmsg__文件与/dev/kmsg的设备节点完全相同,前者同样是后者的马甲。该设备驱动节点是内核日志文件,内核调用printk函数打印的log可以通过该设备节点访问,向该文件中写入则等同于执行内核printk。该文件的内容可通Linux系统标准程序dmesg读取,Android系统也提供了dmesg命令。
static int klog_level = KLOG_DEFAULT_LEVEL;
int klog_get_level(void) {
return klog_level;
}
void klog_set_level(int level) {
klog_level = level;
}
#define LOG_BUF_MAX 512
void klog_vwrite(int level, const char *fmt, va_list ap)
{
char buf[LOG_BUF_MAX];
if (level > klog_level) return;
if (klog_fd < 0) klog_init();
if (klog_fd < 0) return;
vsnprintf(buf, LOG_BUF_MAX, fmt, ap);
buf[LOG_BUF_MAX - 1] = 0;
write(klog_fd, buf, strlen(buf));
}
void klog_write(int level, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
klog_vwrite(level, fmt, ap);
va_end(ap);
}
klog_write调用klog_vwrite函数可用于向/dev/__kmesg__中写入日志,第一个参数是当前log的级别,如果当前level大于klog_leve则直接返回,即无法将log写入/dev/__kmesg__中。此外,提供了两个函数klog_set_level与klog_get_level分别用于设置和读取当前的klog_level,默认level为KLOG_DEFAULT_LEVEL,在klog.h中定义。
#define KLOG_ERROR_LEVEL 3
#define KLOG_WARNING_LEVEL 4
#define KLOG_NOTICE_LEVEL 5
#define KLOG_INFO_LEVEL 6
#define KLOG_DEBUG_LEVEL 7
#define KLOG_ERROR(tag,x...) klog_write(KLOG_ERROR_LEVEL, "<3>" tag ": " x)
#define KLOG_WARNING(tag,x...) klog_write(KLOG_WARNING_LEVEL, "<4>" tag ": " x)
#define KLOG_NOTICE(tag,x...) klog_write(KLOG_NOTICE_LEVEL, "<5>" tag ": " x)
#define KLOG_INFO(tag,x...) klog_write(KLOG_INFO_LEVEL, "<6>" tag ": " x)
#define KLOG_DEBUG(tag,x...) klog_write(KLOG_DEBUG_LEVEL, "<7>" tag ": " x)
#define KLOG_DEFAULT_LEVEL 3 /* messages <= this level are logged */
可见默认级别为3,即KLOG_ERROR_LEVEL,只有调用KLOG_ERROR才能被输出到/dev/__kmesg__中。
这一句用来初始化Android的属性系统,将在init之属性系统中专门介绍。
get_hardware_name(hardware, &revision)通过读取/proc/cpuinfo文件获取硬件信息,以笔者的山寨机为例,该文件内容如下。
shell@android:/ $ cat /proc/cpuinfo
Processor : ARMv7 Processor rev 1 (v7l)
processor : 0
BogoMIPS : 348.76
processor : 1
BogoMIPS : 348.76
processor : 2
BogoMIPS : 348.76
processor : 3
BogoMIPS : 348.76
Features : swp half thumb fastmult vfp edsp thumbee neon vfpv3 tls vfpv4
CPU implementer : 0x41
CPU architecture: 7
CPU variant : 0x0
CPU part : 0xc05
CPU revision : 1
Hardware : QRD MSM8625Q SKUD
Revision : 0000
Serial : 0000000000000000
get_hardware_name函数读取该文件,将Hardware字段的值填入hardware数组中,将Revision字段的值转换为16进制数字填入revision变量中。
接下来init程序调用函数process_kernel_cmdline解析内核启动参数。内核通常由bootloader(启动引导程序)加载启动,目前广泛使用的bootloader大都基于u-boot定制。内核允许bootloader启动自己时传递参数。在内核启动完毕之后,启动参数可通过/proc/cmdline查看。
static void process_kernel_cmdline(void)
{
/* don't expose the raw commandline to nonpriv processes */
chmod("/proc/cmdline", 0440);
/* first pass does the common stuff, and finds if we are in qemu.
* second pass is only necessary for qemu to export all kernel params
* as props.
*/
import_kernel_cmdline(0, import_kernel_nv);
if (qemu[0])
import_kernel_cmdline(1, import_kernel_nv);
/* now propogate the info given on command line to internal variables
* used by init as well as the current required properties
*/
export_kernel_boot_props();
}
首先修改/proc/cmdline文件权限,0440即表明只有root用户或root组用户可以读写该文件,其他用户无法访问。随后连续调用import_kernel_cmdline函数,第一个参数标识当前Android设备是否是模拟器,第二个参数一个函数指针。
import_kernel_cmdline函数将/proc/cmdline内容读入到内部缓冲区中,并将cmdline内容的以空格拆分成小段字符串,依次传递给import_kernel_nv函数处理。以前面/proc/cmdline的输出为例子,该字符串共可以拆分成以下几段
qemu.gles=0
qemu=1
console=ttyS0
android.qemud=ttyS1
android.checkjni=1
ndns=1
因此在import_kernel_nv将会被连续调用6次,依次传入上述字符串。函数实现如下:
static void import_kernel_nv(char *name, int for_emulator)
{
char *value = strchr(name, '=');
int name_len = strlen(name);
if (value == 0) return;
*value++ = 0;
if (name_len == 0) return;
if (for_emulator) {
/* in the emulator, export any kernel option with the
* ro.kernel. prefix */
char buff[PROP_NAME_MAX];
int len = snprintf( buff, sizeof(buff), "ro.kernel.%s", name );
if (len < (int)sizeof(buff))
property_set( buff, value );
return;
}
if (!strcmp(name,"qemu")) {
strlcpy(qemu, value, sizeof(qemu));
} else if (!strncmp(name, "androidboot.", 12) && name_len > 12) {
const char *boot_prop_name = name + 12;
char prop[PROP_NAME_MAX];
int cnt;
cnt = snprintf(prop, sizeof(prop), "ro.boot.%s", boot_prop_name);
if (cnt < PROP_NAME_MAX)
property_set(prop, value);
}
}
import_kernel_cmdline第一次执行时,传入import_kernel_nv的形式参数for_emulator为 0,,因此将匹配name是否为qemu,如果是,将其值保存到qemu全局静态缓冲区中。对于android模拟器,存在/proc/cmdline中存在“qemu=1”字段。如果for_emulator为1,则将生成ro.kernel.{name}={value}属性写入Android的属性系统中。
此时回到process_kernel_cmdline函数,继续执行
if (qemu[0])
import_kernel_cmdline(1, import_kernel_nv);
当系统为模拟器时,qemu[0]其值为'1',第二次执行import_kernel_cmdline,将再次调用6次import_kernel_nv,并且for_emulator为1,因此将生成6个属性,现在来确定以下我们的分析。
root@generic:/ # getprop | grep ro.kernel.
[ro.kernel.android.checkjni]: [1]
[ro.kernel.android.qemud]: [ttyS1]
[ro.kernel.console]: [ttyS0]
[ro.kernel.ndns]: [1]
[ro.kernel.qemu.gles]: [0]
[ro.kernel.qemu]: [1]
可验证我们的分析是正确的。
union selinux_callback cb;
cb.func_log = log_callback;
selinux_set_callback(SELINUX_CB_LOG, cb);
cb.func_audit = audit_callback;
selinux_set_callback(SELINUX_CB_AUDIT, cb);
selinux_initialize();
/* These directories were necessarily created before initial policy load
* and therefore need their security context restored to the proper value.
* This must happen before /dev is populated by ueventd.
*/
restorecon("/dev");
restorecon("/dev/socket");
restorecon("/dev/__properties__");
restorecon_recursive("/sys");
这部分代码是在Android4.1之后添加的,随后伴随Android系统更新不停迭代。这段代码主要涉及SELinux初始化。由于SELinux与Android系统启动关闭不大,暂不分析。
回到init函数
is_charger = !strcmp(bootmode, "charger");
INFO("property init\n");
property_load_boot_defaults();
第一句将利用bootmode与字符串"charger"将其保存到is_charger变量中,is_charger非0表明但前Android是以充电模式启动,否则为正常模式。正常启动模式与充电模式需要启动的进程不同的,这两种模式启动具体启动的程序差别将在init.rc解析时介绍。
接下来调用INFO宏打印一条log语句,此宏定义在init/log.h中,其实现如下
#define ERROR(x...) KLOG_ERROR("init", x)
#define NOTICE(x...) KLOG_NOTICE("init", x)
#define INFO(x...) KLOG_INFO("init", x)
显然这是一条level为KLOG_INFO_LEVEL的log语句。它是否能输出到/dev/__kmesg__中跟当前klog level的值有关。默认情况下,klog level为3,这条语句将不会输出到/dev/__kmsg__中。
到这里init.c main函数之
接下来