在之前博客C/S架构的网络编程中,IO多路复用是将多个IO操作复用到1个服务端进程中进行处理,即无论有多少个客户端进行连接请求,服务端始终只有1个进程对客户端进行响应,这样的好处是节省了系统开销(select不适合单个客户端长会话操作,这样其它客户端连接请求就会一直等待,poll/epoll对select进行了改进)。下面介绍结合了IO多路复用和多进程(多线程)的SocketServer模块。
1 SocketServer模块
SocketServer内部使用IO多路复用以及“多线程”和“多进程” ,从而实现并发处理多个客户端请求的Socket服务端。即:每个客户端请求连接到服务器时,Socket服务端都会创建一个“线程”或者“进程”专门负责处理当前客户端的所有请求。
SocketServer与select/poll/epoll的本质区别:客户端第1次连接时,服务端就为该客户端创建一个线程或进程,此后服务端就利用此线程或进程与客户端进行通信,后续的数据传输几乎不要server端的直接参与。如果服务端创建的是进程,那么client1和client2同时向server端传输数据时是互不影响的;如果服务端创建的是线程(python中多线程,在同一时间只有一个线程在运行,底层会自动进行上下文切换,即python中不存在真正的多线程),那么client1和client2交替上传数据。 知识回顾: python中的多线程,有一个GIL(全局解释器锁)限制在同一时刻只有1个线程在运行,底层自动进行上下文切换,保证多个线程轮流运行(cpu切片),也就是python中不存在真正的多线程问题,伪多线程,实际多个线程不能真正实现并发处理。 |
中间处理过程如图所示
ThreadingTCPServer实现的Soket服务器内部会为每个client创建一个 “线程”,该线程用来和客户端进行交互。
1、ThreadingTCPServer基础
使用ThreadingTCPServer要求:
(1)创建一个继承自SocketServer.BaseRequestHandler的类
(2)类中必须定义一个名称为 handle 的方法
(3)启动ThreadingTCPServer
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 4 import SocketServer 5 6 class MyServer(SocketServer.BaseRequestHandler): 7 8 def handle(self): 9 # print self.request,self.client_address,self.server 10 conn = self.request 11 conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.') 12 Flag = True 13 while Flag: 14 data = conn.recv(1024) 15 if data == 'exit': 16 Flag = False 17 elif data == '0': 18 conn.sendall('通过可能会被录音.balabala一大推') 19 else: 20 conn.sendall('请重新输入.') 21 22 23 if __name__ == '__main__': 24 server = SocketServer.ThreadingTCPServer(('127.0.0.1',8009),MyServer) 25 server.serve_forever()
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 4 import socket 5 6 ip_port = ('127.0.0.1',8009) 7 sk = socket.socket() 8 sk.connect(ip_port) 9 sk.settimeout(5) 10 11 while True: 12 data = sk.recv(1024) 13 print 'receive:',data 14 inp = raw_input('please input:') 15 sk.sendall(inp) 16 if inp == 'exit': 17 break 18 19 sk.close()
2、ThreadingTCPServer源码剖析
ThreadingTCPServer的类图关系如下:
注:实际上在类的继承时,子类会继承父类的方法,所以我们在分析类的继承关系时,直接把父类的方法放到子类中,这样就直观些,在python中还有1点要注意的是子类到底是继承哪个父类的方法,因为python中存在多继承。
内部调用流程为
启动服务端程序 1、执行TCPServer.__init__ 方法,创建服务端Socket对象并绑定IP和端口 2、执行BaseServer.__init__ 方法,将自定义的继承自SocketServer.BaseRequestHandler的类MyRequestHandle赋值给self.RequestHandlerClass 3、执行BaseServer.server_forever方法,While 循环一直监听是否有客户端请求到达 ... 当客户端连接到达服务器 4、执行ThreadingMixIn.process_request方法,创建一个“线程”用来处理请求 5、执行ThreadingMixIn.process_request_thread方法 6、执行BaseServer.finish_request方法,执行self.RequestHandlerClass(),即执行自定义MyRequestHandler的构造方法 (自动调用基类BaseRequestHandler的构造方法,在该构造方法中又会调用MyRequestHandler的handle方法) |
ThreadingTCPServer相关源码
1 class BaseServer: 2 3 """Base class for server classes. 4 5 Methods for the caller: 6 7 - __init__(server_address, RequestHandlerClass) 8 - serve_forever(poll_interval=0.5) 9 - shutdown() 10 - handle_request() # if you do not use serve_forever() 11 - fileno() -> int # for select() 12 13 Methods that may be overridden: 14 15 - server_bind() 16 - server_activate() 17 - get_request() -> request, client_address 18 - handle_timeout() 19 - verify_request(request, client_address) 20 - server_close() 21 - process_request(request, client_address) 22 - shutdown_request(request) 23 - close_request(request) 24 - handle_error() 25 26 Methods for derived classes: 27 28 - finish_request(request, client_address) 29 30 Class variables that may be overridden by derived classes or 31 instances: 32 33 - timeout 34 - address_family 35 - socket_type 36 - allow_reuse_address 37 38 Instance variables: 39 40 - RequestHandlerClass 41 - socket 42 43 """ 44 45 timeout = None 46 47 def __init__(self, server_address, RequestHandlerClass): 48 """Constructor. May be extended, do not override.""" 49 self.server_address = server_address 50 self.RequestHandlerClass = RequestHandlerClass 51 self.__is_shut_down = threading.Event() 52 self.__shutdown_request = False 53 54 def server_activate(self): 55 """Called by constructor to activate the server. 56 57 May be overridden. 58 59 """ 60 pass 61 62 def serve_forever(self, poll_interval=0.5): 63 """Handle one request at a time until shutdown. 64 65 Polls for shutdown every poll_interval seconds. Ignores 66 self.timeout. If you need to do periodic tasks, do them in 67 another thread. 68 """ 69 self.__is_shut_down.clear() 70 try: 71 while not self.__shutdown_request: 72 # XXX: Consider using another file descriptor or 73 # connecting to the socket to wake this up instead of 74 # polling. Polling reduces our responsiveness to a 75 # shutdown request and wastes cpu at all other times. 76 r, w, e = _eintr_retry(select.select, [self], [], [], 77 poll_interval) 78 if self in r: 79 self._handle_request_noblock() 80 finally: 81 self.__shutdown_request = False 82 self.__is_shut_down.set() 83 84 def shutdown(self): 85 """Stops the serve_forever loop. 86 87 Blocks until the loop has finished. This must be called while 88 serve_forever() is running in another thread, or it will 89 deadlock. 90 """ 91 self.__shutdown_request = True 92 self.__is_shut_down.wait() 93 94 # The distinction between handling, getting, processing and 95 # finishing a request is fairly arbitrary. Remember: 96 # 97 # - handle_request() is the top-level call. It calls 98 # select, get_request(), verify_request() and process_request() 99 # - get_request() is different for stream or datagram sockets 100 # - process_request() is the place that may fork a new process 101 # or create a new thread to finish the request 102 # - finish_request() instantiates the request handler class; 103 # this constructor will handle the request all by itself 104 105 def handle_request(self): 106 """Handle one request, possibly blocking. 107 108 Respects self.timeout. 109 """ 110 # Support people who used socket.settimeout() to escape 111 # handle_request before self.timeout was available. 112 timeout = self.socket.gettimeout() 113 if timeout is None: 114 timeout = self.timeout 115 elif self.timeout is not None: 116 timeout = min(timeout, self.timeout) 117 fd_sets = _eintr_retry(select.select, [self], [], [], timeout) 118 if not fd_sets[0]: 119 self.handle_timeout() 120 return 121 self._handle_request_noblock() 122 123 def _handle_request_noblock(self): 124 """Handle one request, without blocking. 125 126 I assume that select.select has returned that the socket is 127 readable before this function was called, so there should be 128 no risk of blocking in get_request(). 129 """ 130 try: 131 request, client_address = self.get_request() 132 except socket.error: 133 return 134 if self.verify_request(request, client_address): 135 try: 136 self.process_request(request, client_address) 137 except: 138 self.handle_error(request, client_address) 139 self.shutdown_request(request) 140 141 def handle_timeout(self): 142 """Called if no new request arrives within self.timeout. 143 144 Overridden by ForkingMixIn. 145 """ 146 pass 147 148 def verify_request(self, request, client_address): 149 """Verify the request. May be overridden. 150 151 Return True if we should proceed with this request. 152 153 """ 154 return True 155 156 def process_request(self, request, client_address): 157 """Call finish_request. 158 159 Overridden by ForkingMixIn and ThreadingMixIn. 160 161 """ 162 self.finish_request(request, client_address) 163 self.shutdown_request(request) 164 165 def server_close(self): 166 """Called to clean-up the server. 167 168 May be overridden. 169 170 """ 171 pass 172 173 def finish_request(self, request, client_address): 174 """Finish one request by instantiating RequestHandlerClass.""" 175 self.RequestHandlerClass(request, client_address, self) 176 177 def shutdown_request(self, request): 178 """Called to shutdown and close an individual request.""" 179 self.close_request(request) 180 181 def close_request(self, request): 182 """Called to clean up an individual request.""" 183 pass 184 185 def handle_error(self, request, client_address): 186 """Handle an error gracefully. May be overridden. 187 188 The default is to print a traceback and continue. 189 190 """ 191 print '-'*40 192 print 'Exception happened during processing of request from', 193 print client_address 194 import traceback 195 traceback.print_exc() # XXX But this goes to stderr! 196 print '-'*40
1 class TCPServer(BaseServer): 2 3 """Base class for various socket-based server classes. 4 5 Defaults to synchronous IP stream (i.e., TCP). 6 7 Methods for the caller: 8 9 - __init__(server_address, RequestHandlerClass, bind_and_activate=True) 10 - serve_forever(poll_interval=0.5) 11 - shutdown() 12 - handle_request() # if you don't use serve_forever() 13 - fileno() -> int # for select() 14 15 Methods that may be overridden: 16 17 - server_bind() 18 - server_activate() 19 - get_request() -> request, client_address 20 - handle_timeout() 21 - verify_request(request, client_address) 22 - process_request(request, client_address) 23 - shutdown_request(request) 24 - close_request(request) 25 - handle_error() 26 27 Methods for derived classes: 28 29 - finish_request(request, client_address) 30 31 Class variables that may be overridden by derived classes or 32 instances: 33 34 - timeout 35 - address_family 36 - socket_type 37 - request_queue_size (only for stream sockets) 38 - allow_reuse_address 39 40 Instance variables: 41 42 - server_address 43 - RequestHandlerClass 44 - socket 45 46 """ 47 48 address_family = socket.AF_INET 49 50 socket_type = socket.SOCK_STREAM 51 52 request_queue_size = 5 53 54 allow_reuse_address = False 55 56 def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True): 57 """Constructor. May be extended, do not override.""" 58 BaseServer.__init__(self, server_address, RequestHandlerClass) 59 self.socket = socket.socket(self.address_family, 60 self.socket_type) 61 if bind_and_activate: 62 try: 63 self.server_bind() 64 self.server_activate() 65 except: 66 self.server_close() 67 raise 68 69 def server_bind(self): 70 """Called by constructor to bind the socket. 71 72 May be overridden. 73 74 """ 75 if self.allow_reuse_address: 76 self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 77 self.socket.bind(self.server_address) 78 self.server_address = self.socket.getsockname() 79 80 def server_activate(self): 81 """Called by constructor to activate the server. 82 83 May be overridden. 84 85 """ 86 self.socket.listen(self.request_queue_size) 87 88 def server_close(self): 89 """Called to clean-up the server. 90 91 May be overridden. 92 93 """ 94 self.socket.close() 95 96 def fileno(self): 97 """Return socket file number. 98 99 Interface required by select(). 100 101 """ 102 return self.socket.fileno() 103 104 def get_request(self): 105 """Get the request and client address from the socket. 106 107 May be overridden. 108 109 """ 110 return self.socket.accept() 111 112 def shutdown_request(self, request): 113 """Called to shutdown and close an individual request.""" 114 try: 115 #explicitly shutdown. socket.close() merely releases 116 #the socket and waits for GC to perform the actual close. 117 request.shutdown(socket.SHUT_WR) 118 except socket.error: 119 pass #some platforms may raise ENOTCONN here 120 self.close_request(request) 121 122 def close_request(self, request): 123 """Called to clean up an individual request.""" 124 request.close()
1 class ThreadingMixIn:
2 """Mix-in class to handle each request in a new thread."""
3
4 # Decides how threads will act upon termination of the
5 # main process
6 daemon_threads = False
7
8 def process_request_thread(self, request, client_address):
9 """Same as in BaseServer but as a thread.
10
11 In addition, exception handling is done here.
12
13 """
14 try:
15 self.finish_request(request, client_address)
16 self.shutdown_request(request)
17 except:
18 self.handle_error(request, client_address)
19 self.shutdown_request(request)
20
21 def process_request(self, request, client_address):
22 """Start a new thread to process the request."""
23 t = threading.Thread(target = self.process_request_thread,
24 args = (request, client_address))
25 t.daemon = self.daemon_threads
26 t.start()
27
28 复制代码
1 class ThreadingTCPServer(ThreadingMixIn, TCPServer): 2 pass
RequestHandler相关源码
1 class BaseRequestHandler: 2 3 """Base class for request handler classes. 4 5 This class is instantiated for each request to be handled. The 6 constructor sets the instance variables request, client_address 7 and server, and then calls the handle() method. To implement a 8 specific service, all you need to do is to derive a class which 9 defines a handle() method. 10 11 The handle() method can find the request as self.request, the 12 client address as self.client_address, and the server (in case it 13 needs access to per-server information) as self.server. Since a 14 separate instance is created for each request, the handle() method 15 can define arbitrary other instance variariables. 16 17 """ 18 19 def __init__(self, request, client_address, server): 20 self.request = request 21 self.client_address = client_address 22 self.server = server 23 self.setup() 24 try: 25 self.handle() 26 finally: 27 self.finish() 28 29 def setup(self): 30 pass 31 32 def handle(self): 33 pass 34 35 def finish(self): 36 pass
源码精简
1 import socket 2 import threading 3 import select 4 5 def process(request, client_address): 6 print request,client_address 7 conn = request 8 conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.') 9 flag = True 10 while flag: 11 data = conn.recv(1024) 12 if data == 'exit': 13 flag = False 14 elif data == '0': 15 conn.sendall('通过可能会被录音.balabala一大推') 16 else: 17 conn.sendall('请重新输入.') 18 19 sk = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 20 sk.bind(('127.0.0.1',8002)) 21 sk.listen(5) 22 23 while True: 24 r, w, e = select.select([sk,],[],[],1) 25 print 'looping' 26 if sk in r: 27 print 'get request' 28 request, client_address = sk.accept() 29 t = threading.Thread(target=process, args=(request, client_address)) 30 t.daemon = False 31 t.start() 32 33 sk.close()
从精简代码可以看出,SocketServer的ThreadingTCPServer之所以可以同时处理请求得益于select和Threading两个东西,其实本质上就是在服务器端为每一个客户端创建一个线程,用于后续的数据处理,当前线程用来处理对应客户端的请求,所以可以支持同时n个客户端链接(长连接)。
1.2 ForkingTCPServer
ForkingTCPServer与ThreadingTCPServer的使用和执行流程基本一致,只不过在内部分别为请求者建立“进程”和“线程”。
基本使用:
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 4 import SocketServer 5 6 class MyServer(SocketServer.BaseRequestHandler): 7 8 def handle(self): 9 # print self.request,self.client_address,self.server 10 conn = self.request 11 conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.') 12 Flag = True 13 while Flag: 14 data = conn.recv(1024) 15 if data == 'exit': 16 Flag = False 17 elif data == '0': 18 conn.sendall('通过可能会被录音.balabala一大推') 19 else: 20 conn.sendall('请重新输入.') 21 22 23 if __name__ == '__main__': 24 server = SocketServer.ForkingTCPServer(('127.0.0.1',8009),MyServer) 25 server.serve_forever()
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 4 import socket 5 6 ip_port = ('127.0.0.1',8009) 7 sk = socket.socket() 8 sk.connect(ip_port) 9 sk.settimeout(5) 10 11 while True: 12 data = sk.recv(1024) 13 print 'receive:',data 14 inp = raw_input('please input:') 15 sk.sendall(inp) 16 if inp == 'exit': 17 break 18 19 sk.close()
以上ForkingTCPServer只是将 ThreadingTCPServer 实例中的代码:
server = SocketServer.ThreadingTCPServer(( '127.0.0.1' , 8009 ),MyRequestHandler)
变更为:
server = SocketServer.ForkingTCPServer(( '127.0.0.1' , 8009 ),MyRequestHandler)
|
SocketServer的ThreadingTCPServer之所以可以同时处理请求得益于select和os.fork两个东西,其实本质上就是在服务器端为每一个客户端创建一个进程,用于后续数据处理,当前新创建的进程用来处理对应客户端的请求,所以,可以支持同时n个客户端链接(长连接)。
源码剖析参考 ThreadingTCPServer
2 Twisted模块
使用传统的BIO(Blocking IO/阻塞IO)进行网络编程时,进行网络IO读写时都会阻塞当前线程,如果实现一个TCP服务器,都需要对每个客户端连接开启一个线程,而很多线程可能都在傻傻的阻塞住等待读写数据,系统资源消耗大。
Twisted是用Python实现的基于事件驱动的网络引擎框架,功能非常丰富,基本包括了常用的网络组件,例如:网络协议、线程、数据库管理、网络操作、电子邮件等。
编程框架,即别人预先定义好的一个框架(一个项目),如.net某个web框架有25个class,从BeginRequest依次执行类里的process方法。程序员自定义一个类添加到框架里,应用程序则从上到下运行,就会执行自定义代码。框架只知道这个类的列表,不关心具体内容,从上到下执行,类似于一个执行链,C#里叫委托链。也就是把代码类放到这个列表中,委托这个框架替你执行。
事件驱动(not event),把自定义代码注册到框架中,框架代替你执行。或者框架提供几个接口,让你插入数据(python无接口概念,只有事件驱动)。委托不能为空,事件可以为空。通俗来讲,所谓事件驱动,就是说程序就像是一个报警器(reactor),时刻等待着外部事件(event),诸如有人入侵等,一旦有事件发生,程序就会触发一些特定的操作(callback),注入拨打报警电话等。
简而言之,事件驱动分为二个部分:第一,注册事件;第二,触发事件。
自定义事件驱动框架如下:
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 4 #event_drive.py 5 6 event_list = [] 7 8 def run(): 9 for event in event_list: 10 obj = event() 11 obj.execute() 12 13 class BaseHandler(object): 14 """ 15 用户必须继承该类,从而规范所有类的方法(类似于接口的功能) 16 """ 17 def execute(self): 18 raise Exception('you must overwrite execute')
程序员使用该自定义事件驱动框架
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 4 from source import event_drive 5 6 class MyHandler(event_drive.BaseHandler): 7 8 def execute(self): 9 print 'event-drive execute MyHandler' 10 11 event_drive.event_list.append(MyHandler) 12 event_drive.run()
执行过程:
1 导入自定义框架event_drive 2 自定义类MyClass,这个类必须继承event_drive中的BaseHandler类 3 MyClass类中重载execute方法 4 注册事件到框架的委托链,把自定义的类MyClass加入到事件列表event_list中(下面的Twisted框架是创建对象后改一个字段为类名也是同样的目的) 5 执行run方法 事件驱动只不过是框架规定了执行顺序,程序员在使用框架时,可以向原执行顺序中注册“事件”,从而在框架执行时可以出发已注册 的“事件”。 |
基于事件驱动Twisted模块的Socket
(1)由于twisted是第三方模块,默认没有安装,需要先安装
cd Twisted-15.5.0 python setup.py build #编译 python setup.py install #安装 上述安装方法适用于windows和linux的命令行安装,实际上也可以直接执行python setup.py install 注意:twisted依赖于zope和win32api模块,需要先安装依赖。 |
(2)实例
1 #!/usr/bin/env python 2 # -*- coding:utf-8 -*- 3 4 from twisted.internet import protocol 5 from twisted.internet import reactor 6 7 class Echo(protocol.Protocol): #继承protocol.py中的Protocol类 8 def dataReceived(self, data): 9 self.transport.write(data) #将收到的内容直接发送回去 10 11 def main(): 12 factory = protocol.ServerFactory() #实例化 13 factory.protocol = Echo #将自定义类传给对象 14 15 reactor.listenTCP(8000,factory) #将端口和实例化对象作为参数传给reactor 16 reactor.run() 17 18 if __name__ == '__main__': 19 main()
1 import socket 2 3 ip_port=('127.0.0.1',8000) 4 sk=socket.socket() 5 sk.connect(ip_port) 6 sk.settimeout(5) 7 8 while True: 9 inp=raw_input("please input:") 10 sk.sendall(inp) 11 print sk.recv(1024) 12 13 sk.close()
源码类图关系
实例执行流程
运行服务端程序 创建Protocol的派生类Echo 创建ServerFactory对象,并将Echo类封装到其protocol字段中 执行reactor的listenTCP方法,内部使用tcp.Port创建socket server对象,并将该对象添加到了reactor的set类型的字段_read 中 执行reactor的run方法,内部执行while循环,并通过select来监视_read中文件描述符是否有变化,循环中... 客户端请求到达 执行reactor的_doReadOrWrite方法,其内部通过反射调用tcp.Port类的doRead方法,内部accept客户端连接并创建Server对象实例(用于封装客户端socket信息)和创建Echo对象实例(用于处理请求),然后调用Echo对象实例的makeConnection方法,创建连接。 执行tcp.Server类的doRead方法,读取数据, 执行tcp.Server类的_dataReceived方法,如果读取数据内容为空(关闭链接),否则,出发Echo的dataReceived方法 执行Echo的dataReceived方法 |
从源码可以看出,上述实例本质上使用了事件驱动的方法 和 IO多路复用的机制来进行Socket的处理。
Pycharm debug模式调试调用关系
Twisted优点:
1、使用基于事件驱动的编程模型,而不是多线程模型。
2、跨平台:为主流操作系统平台暴露出的事件通知系统提供统一的接口。
3、“内置电池”的能力:提供流行的应用层协议实现,因此Twisted马上就可为开发人员所用。
4、符合RFC规范,已经通过健壮的测试套件证明了其一致性。
5、能很容易的配合多个网络协议一起使用。
6、可扩展。
更多Twisted内容,请参考:
http://www.cnblogs.com/c9com/archive/2013/01/05/2845552.html(Twisted reactor解剖)
http://www.cnblogs.com/zhangjing0502/archive/2012/07/11/2586666.html(Twisted的网络通信模型)
http://www.cnblogs.com/zhangjing0502/archive/2012/07/11/2586575.html(Python中reactor,factory,protocol)
http://www.cnblogs.com/zhangjing0502/archive/2012/05/16/2504415.html(Twisted异步编程--Deferred)
http://www.cnblogs.com/zhangjing0502/archive/2012/05/30/2526552.html([Python-Twisted] Twisted入门之端口转发服务器)
http://www.cnblogs.com/Rex7/p/4752581.html(跟踪 twisted 里deferred 的Callback)
3 paramiko模块
linux运维中都需要对服务器进行配置,如果服务器数量较多,那么可以进行远程自动化批量操作。在python中的paramiko模块就是实现远程执行命令的模块。使用paramiko模块仅需要在本地安装相应的模块(pycrypto以及paramiko模块),对远程服务器没有配置要求,paramiko模块基于ssh协议,实现对远程服务器的相关操作,对于连接多台服务器,进行复杂的连接操作特别有帮助。
3.1 paramiko安装
1 windows下的安装paramiko (1)解压pycrypto-2.6.tar.gz源码到路径C:\Python27\Lib\site-packages (2)在windows控制台下进入目录pycrypto-2.6,依次执行python setup.py build和python setup.py install window是如果没有安装编译器,那么会报错,解决办法是安装VCForPython27.msi(Microsoft Visual C++ Compiler for Python 2.7) 编译过程中会出现“Unable to find vcvarsall.bat”的错误,解决方法参考http://blog.csdn.net/donger_soft/article/details/44838109 测试是否安装成功:在python命令行下输入:import pycrypto,检查是否报错 (3)解压paramiko-1.10.1.tar.gz源码到路径C:\Python27\Lib\site-packages (4)在windows控制台下进入目录paramiko-1.10.1,依次执行python setup.py build和python setup.py install 测试是否安装成功:在python命令行下输入:import paramiko,检查是否报错 2 ubuntu下的安装paramiko (1)先安装python-devel(前提是要安装编译器gcc) (2)解压pycrypto-2.6.tar.gz源码,进入目录pycrypto-2.6,执行python setup.py build && python setup.py install 测试是否安装成功:在python命令行下输入:import pycrypto,检查是否报错 (3)解压paramiko-1.10.1.tar.gz源码,进入目录paramiko-1.10.1,执行python setup.py build && python setup.py install 测试是否安装成功:在python命令行下输入:import paramiko,检查是否报错 |
3.2 paramiko使用
SSHClient方法
1 #!/usr/bin/env python 2 #-*- coding:utf-8 -*- 3 4 import paramiko 5 6 ssh = paramiko.SSHClient() #创建ssh对象 7 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) #允许连接不在know_hosts文件中的主机 8 ssh.connect(hostname='192.168.1.100',port=22,username='root',password='111111') #hostname='主机名'或'ip地址' 9 stdin,stdout,stderror = ssh.exec_command('df') #在远程服务器执行命令df 10 11 print stdout.read() #获取命令结果 12 print stderror.read() #如果命令执行错误,则返回标准错误输出 13 ssh.close() #关闭连接
1 #!/usr/bin/env python 2 #-*- coding:utf-8 -*- 3 4 import paramiko 5 6 transport = paramiko.Transport(('192.168.7.100',22)) #创建transport对象 7 transport.connect(username='root',password='nihao123!')#调用连接方法connect 8 9 ssh = paramiko.SSHClient() #创建ssh对象 10 ssh._transport = transport #把上面创建的transport对象赋值给ssh对象中的_transport字段 11 12 stdin,stdout,stderr = ssh.exec_command('ifconfig') #执行命令ifconfig 13 14 print stdout.read() 15 print stderr.read() 16 17 transport.close()
在上述两个实例中,其实实例1中connect内部封装了Transport,即:
ssh = paramiko.SSHClient()
t = self._transport = Transport(sock, gss_kex=gss_kex, gss_deleg_creds=gss_deleg_creds)
注意:在操作文件时只能用实例2的方法
SFTPClient方法
1 #!/usr/bin/env python 2 #-*- coding:utf-8 -*- 3 4 import paramiko 5 6 private_key = paramiko.RSAKey.from_private_key_file('/root/.ssh/id_rsa') 7 8 ssh = paramiko.SSHClient() #创建ssh对象 9 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) #允许连接不在know_host文件中的的主机 10 ssh.connect(hostname='192.168.1.100',port=22,username='root',pkey=private_key) #连接服务器 11 stdin,stdout,stderr = ssh.exec_command('ifconfig') #执行命令 12 print stdout.read() #获取命令执行结果 13 ssh.close() 14 15 ''' 16 如果是运维人员这里不需要看 17 1、首先创建一个公钥和私钥 18 ssh-keygen 19 2、复制id_rsa.pub至要被远程执行命令的机器,并把id_rsa.pub里的内容增加至authorized_keys文件中 20 如果authorized_keys文件不存在创建即可 21 '''
1 #!/usr/bin/env python 2 #-*- coding:utf-8 -*- 3 4 import paramiko 5 6 private_key = paramiko.RSAKey.from_private_key_file('/root/.ssh/id_rsa') 7 8 transport = paramiko.Transport(('192.168.1.100',22)) 9 transport.connect(username='root',pkey=private_key) #连接 10 11 sftp = paramiko.SFTPClient.from_transport(transport)#创建SFTPClient对象 12 13 sftp.put('test.zip','/tmp/test.zip') #将test.zip上传到目标机器的/tmp/目录下,并命名为test.zip 14 sftp.get('/tmp/messages.log','test.log') #下载目标服务器/tmp/messages.log 到本地,并命名为test.log 15 16 transport.close()
在远程服务器执行命令时,其实时间主要消耗在建立连接上了。
自定义类的,在连接后进行相应的上传下载操作,这样就可以在一次连接中进行其它操作,避免频繁的创建连接,关闭连接,减少资源消耗
1 #!/usr/bin/env python 2 #-*- coding:utf-8 -*- 3 4 import paramiko 5 import uuid 6 7 class DownUpLoad(object): 8 def __init__(self,ip,port,user,passwd): 9 self.hostname = ip 10 self.port = port 11 self.username = user 12 self.password = passwd 13 14 def create_file(self): 15 file_name = str(uuid.uuid4()) #uuid.uuid4()会生成一个文件UUID,当作文件名 16 with open(file_name,'wb') as f: 17 f.write('This is test file!') 18 return file_name 19 20 def run(self): 21 self.connect() 22 self.upload() 23 self.rename() 24 self.close() 25 26 def connect(self): #连接方法 27 transport = paramiko.Transport((self.hostname, self.port)) #创建一个连接对象 28 transport.connect(username=self.username, password=self.password)#调用transport对象中的连接方法 29 self.__transport = transport #把transport赋值给__transport 30 31 def close(self): #关闭连接 32 self.__transport.close() 33 34 def upload(self): #上传文件方法 35 file_name = self.create_file() #创建文件 36 sftp = paramiko.SFTPClient.from_transport(self.__transport) #创建基于transport连接的SFTPClient 37 sftp.put(file_name,'/tmp/test.txt') #上传文件 38 39 def rename(self): #执行命名方法 40 ssh = paramiko.SSHClient() #建立ssh对象 41 ssh._transport = self.__transport #替换ssh_transport字段为self.__transport 42 stdin,stdout,stderr = ssh.exec_command('mv /tmp/test1 /tmp/test2') #执行命令 43 print stdout.read() #读取执行命令 44 45 if __name__ == '__main__': 46 ha = DownUpLoad() 47 ha.run()
参考资料:
http://www.cnblogs.com/wupeiqi/articles/5095821.html
http://www.cnblogs.com/wupeiqi/articles/5040823.html
http://www.cnblogs.com/luotianshuai/p/5111587.html
http://www.cnblogs.com/luotianshuai/p/5131053.html