之前整理了一篇博文,是纯粹在应用层(用户空间)来轮询GPIO口的电平状态,来达到按键检测的目的。
https://blog.csdn.net/cfl927096306/article/details/88640930
显然这样就会一直不停的占用CPU,虽然每次轮询都delay了10毫秒,但这样的代码还是不够优秀。
本篇文章提供了另一种思路:
1. 由Linux驱动来完成按键的检测,借用Linux的输入子系统,再利用海思Hi3531的GPIO硬件中断来做
2. 应用层则使用系统调用read()函数来获取按键按下、抬起、长按的事件即可
Linux驱动程序如下:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//按键映射
//KEY1 - GPIO6_1
//KEY2 - GPIO5_7
//KEY3 - GPIO5_5
#define MY_KEY1 1
#define MY_KEY2 2
#define MY_KEY3 3
#define WRITE_REG(Addr, Value) ((*(volatile unsigned int *)(Addr)) = (Value))
#define READ_REG(Addr) (*(volatile unsigned int *)(Addr))
//Hi3531复用寄存器基地址
#define MUXCTRL_BASE_ADDR 0x200F0000
//Hi3531 GPIO5基地址
#define GPIO_5_BASE_ADDR 0x201A0000
//Hi3531 GPIO6基地址
#define GPIO_6_BASE_ADDR 0x201B0000
//方向控制寄存器,配置输入或输出
#define GPIO_DIR_OFFSET_ADDR 0x400
//中断触发寄存器,配置边沿或电平触发
#define GPIO_IS_OFFSET_ADDR 0x404
//双沿触发中断寄存器,配置单边沿或双边沿触发方式
#define GPIO_IBE_OFFSET_ADDR 0x408
//触发中断条件寄存器,配置下降沿/低电平或上升沿/高电平触发
#define GPIO_IEV_OFFSET_ADDR 0x40C
//中断屏蔽寄存器,用来屏蔽或使能中断
#define GPIO_IE_OFFSET_ADDR 0x410
//原始中断状态寄存器,用来查询 GPIO 管脚是否发生中断(0:未发生,1:发生)
#define GPIO_RIS_OFFSET_ADDR 0x414
//屏蔽状态中断寄存器,用来查询 GPIO 管脚屏蔽后的中断是否有效
#define GPIO_MIS_OFFSET_ADDR 0x418
//中断清除寄存器,用来清除管脚产生的中断,同时清除GPIO_RIS和GPIO_MIS
#define GPIO_IC_OFFSET_ADDR 0x41C
unsigned int muxctrl_virtual_addr = 0;
unsigned int gpio_5_virtual_addr = 0;
unsigned int gpio_6_virtual_addr = 0;
//定义一个结构体用来对输入按键进行描述
struct my_buttons_desc {
int gpio; // 表示对应的按键引脚
int irq; // 表示对应的中断位
char *name; // 表示对应的按键请求中断时的中断名
int key_code; // 表示按键在输入子系统中对应的键值
};
//定义一个描述按键的数组
//根据hisi SDK文档得知:GPIO6的中断号是111,GPIO5的中断号是110
static struct my_buttons_desc buttons_desc[] = {
{MY_KEY1, 111, "my_buttons_A", KEY_A},
{MY_KEY2, 110, "my_buttons_B", KEY_B},
{MY_KEY3, 110, "my_buttons_C", KEY_C},
};
//定义一个输入子系统的结构体指针变量
static struct input_dev *buttons_dev;
static struct my_buttons_desc *irq_buttons_desc = NULL;
static struct timer_list buttons_timer;
//地址映射
static int hi3531_virtual_addr_map(void)
{
muxctrl_virtual_addr = (unsigned int)ioremap_nocache(MUXCTRL_BASE_ADDR, 0x10000);
if(!muxctrl_virtual_addr)
{
printk("MUXCTRL_BASE_ADDR ioremap addr failed !\n");
return -1;
}
gpio_5_virtual_addr = (unsigned int)ioremap_nocache(GPIO_5_BASE_ADDR, 0x10000);
if(!gpio_5_virtual_addr)
{
printk("GPIO_5_BASE_ADDR ioremap addr failed !\n");
return -1;
}
gpio_6_virtual_addr = (unsigned int)ioremap_nocache(GPIO_6_BASE_ADDR, 0x10000);
if(!gpio_6_virtual_addr)
{
printk("GPIO_6_BASE_ADDR ioremap addr failed !\n");
return -1;
}
return 0;
}
//取消地址映射
static void hi3531_virtual_addr_unmap(void)
{
iounmap((void*)muxctrl_virtual_addr);
iounmap((void*)gpio_5_virtual_addr);
iounmap((void*)gpio_6_virtual_addr);
}
//海思官方提供的中断操作
//如果要产生中断,且避免假中断,则必须按照下面的初始化顺序:
//1. 配置 GPIO_IS,选择边沿触发或电平触发。
//2. 配置 GPIO_IEV,选择下降沿/上升沿触发和高电平/低电平触发。
//3. 如果选择边沿触发,需配置 GPIO_IBE,选择单沿或双沿触发方式。
//4. 保证 GPIO 数据线在以上操作过程中保持稳定。
//5. 向寄存器 GPIO_IC 写 0xFF,清中断。
//6. 配置 GPIO_IE 为 1,使能中断。
static int hi3531_button_gpio_config(void)
{
unsigned int u32Reg = 0;
//配置为gpio
WRITE_REG(muxctrl_virtual_addr + 0xC4, 0x1);//KEY1 - GPIO6_1
WRITE_REG(muxctrl_virtual_addr + 0xBC, 0x1);//KEY3 - GPIO5_7
//配置为输入
u32Reg = READ_REG(gpio_6_virtual_addr + GPIO_DIR_OFFSET_ADDR);
u32Reg &= (~0x02);
WRITE_REG(gpio_6_virtual_addr + GPIO_DIR_OFFSET_ADDR, u32Reg);//GPIO6_1
u32Reg = READ_REG(gpio_5_virtual_addr + GPIO_DIR_OFFSET_ADDR);
u32Reg &= (~0x80);
WRITE_REG(gpio_5_virtual_addr + GPIO_DIR_OFFSET_ADDR, u32Reg);//GPIO5_7
//配置中断
u32Reg = READ_REG(gpio_6_virtual_addr + GPIO_IS_OFFSET_ADDR);
u32Reg &= (~0x02);
WRITE_REG(gpio_6_virtual_addr + GPIO_IS_OFFSET_ADDR, u32Reg); //GPIO6_1: 边沿触发中断
u32Reg = READ_REG(gpio_6_virtual_addr + GPIO_IBE_OFFSET_ADDR);
u32Reg |= (0x02);
WRITE_REG(gpio_6_virtual_addr + GPIO_IBE_OFFSET_ADDR, u32Reg); //GPIO6_1: 双边沿触发中断
WRITE_REG(gpio_6_virtual_addr + GPIO_IC_OFFSET_ADDR, 0xFF); //GPIO6: 清除中断
u32Reg = READ_REG(gpio_6_virtual_addr + GPIO_IE_OFFSET_ADDR);
u32Reg |= (0x02);
WRITE_REG(gpio_6_virtual_addr + GPIO_IE_OFFSET_ADDR, u32Reg); //GPIO6_1: 使能中断
u32Reg = READ_REG(gpio_5_virtual_addr + GPIO_IS_OFFSET_ADDR);
u32Reg &= (~0xA0);
WRITE_REG(gpio_5_virtual_addr + GPIO_IS_OFFSET_ADDR, u32Reg); //GPIO5_7,GPIO5_5: 边沿触发中断
u32Reg = READ_REG(gpio_5_virtual_addr + GPIO_IBE_OFFSET_ADDR);
u32Reg |= (0xA0);
WRITE_REG(gpio_5_virtual_addr + GPIO_IBE_OFFSET_ADDR, u32Reg); //GPIO5_7,GPIO5_5: 双边沿触发中断
WRITE_REG(gpio_5_virtual_addr + GPIO_IC_OFFSET_ADDR, 0xFF); //GPIO5: 清除中断
u32Reg = READ_REG(gpio_5_virtual_addr + GPIO_IE_OFFSET_ADDR);
u32Reg |= (0xA0);
WRITE_REG(gpio_5_virtual_addr + GPIO_IE_OFFSET_ADDR, u32Reg); //GPIO5_7,GPIO5_5: 使能中断
return 0;
}
//GPIO按键中断处理函数
static irqreturn_t my_buttons_irq(int irq, void *dev_id)
{
unsigned int u32Reg = 0;
struct my_buttons_desc *tmp_desc = (struct my_buttons_desc *)dev_id;
//因为是一组GPIO(8个pin)共享一个中断号,所以这里一开始就要判断到底是哪个中断来了
//通过读中断状态寄存器来判断
if(tmp_desc->gpio == MY_KEY1)
{
u32Reg = READ_REG(gpio_6_virtual_addr + GPIO_RIS_OFFSET_ADDR);
if(!(u32Reg & 0x02)) //GPIO6_1
{
//MY_KEY1 interrupt not happened
return IRQ_HANDLED;
}
WRITE_REG(gpio_6_virtual_addr + GPIO_IC_OFFSET_ADDR, 0xFF); //GPIO6: 清除中断
}
else if(tmp_desc->gpio == MY_KEY2)
{
u32Reg = READ_REG(gpio_5_virtual_addr + GPIO_RIS_OFFSET_ADDR);
if(!(u32Reg & 0x80)) //GPIO5_7
{
//MY_KEY2 interrupt not happened
return IRQ_HANDLED;
}
WRITE_REG(gpio_5_virtual_addr + GPIO_IC_OFFSET_ADDR, 0xFF);//GPIO5: 清除中断
}
else if(tmp_desc->gpio == MY_KEY3)
{
u32Reg = READ_REG(gpio_5_virtual_addr + GPIO_RIS_OFFSET_ADDR);
if(!(u32Reg & 0x20)) //GPIO5_5
{
//MY_KEY3 interrupt not happened
return IRQ_HANDLED;
}
WRITE_REG(gpio_5_virtual_addr + GPIO_IC_OFFSET_ADDR, 0xFF);//GPIO5: 清除中断
}
//按键IO发生边沿中断时重新设置定时间隔,用于按键消抖
//20ms之后触发定时器中断,执行my_buttons_timer_function(),并将buttons_timer.data传过去
irq_buttons_desc = (struct my_buttons_desc *)dev_id;
buttons_timer.data = irq_buttons_desc->gpio;
mod_timer(&buttons_timer, jiffies+msecs_to_jiffies(20));
return IRQ_HANDLED;
}
static unsigned int my_buttons_read_gpio(unsigned int gpio)
{
unsigned int gpio_level = 0;
switch(gpio)
{
case MY_KEY1:
gpio_level = READ_REG(gpio_6_virtual_addr + (0x02 << 2)); //GPIO6_1
gpio_level = gpio_level >> 1;
break;
case MY_KEY2:
gpio_level = READ_REG(gpio_5_virtual_addr + (0x80 << 2)); //GPIO5_7
gpio_level = gpio_level >> 7;
break;
case MY_KEY3:
gpio_level = READ_REG(gpio_5_virtual_addr + (0x20 << 2)); //GPIO5_5
gpio_level = gpio_level >> 5;
break;
default:
break;
}
return gpio_level;
}
//定时器中断处理函数
static void my_buttons_timer_function(unsigned long data)
{
unsigned int gpio_level;
if (!irq_buttons_desc)
{
// 初始化定时器会走进该function一次
printk("irq_buttons_desc == NULL, return\n");
return;
}
//获取按键IO状态
gpio_level = my_buttons_read_gpio((unsigned int)data);
printk("my_buttons_timer_function: gpio = %ld, gpio_level = %d\n", data, gpio_level);
//根据按键IO状态上报按键事件
if (gpio_level)
{
//上报按键弹起
input_event(buttons_dev, EV_KEY, irq_buttons_desc->key_code, 0);
input_sync(buttons_dev);
}
else
{
//上报按键按下
input_event(buttons_dev, EV_KEY, irq_buttons_desc->key_code, 1);
input_sync(buttons_dev);
}
}
//入口函数
static int __init my_buttons_init(void)
{
int i = 0;
int ret = 0;
printk("my_buttons_init start\n");
//1、分配一个input_dev结构体
buttons_dev = input_allocate_device();
if(!buttons_dev)
{
printk("input_allocate_device error!\n");
return -ENOMEM;
}
//2、设置input_dev结构体
//2.1、设置支持的事件类型
set_bit(EV_KEY, buttons_dev->evbit);
set_bit(EV_REP, buttons_dev->evbit); //支持长按
//2.2、设置支持该类事件中的事件码
for(i = 0; i < sizeof(buttons_desc)/sizeof(buttons_desc[0]); i++)
{
set_bit(buttons_desc[i].key_code, buttons_dev->keybit);
}
//2.3、硬件相关的操作
hi3531_virtual_addr_map();
hi3531_button_gpio_config();
//3、中断相关的操作
//为每个按键申请一个中断,共用中断处理函数my_buttons_irq()
//按键触发方式为双边沿触发
for(i = 0; i < sizeof(buttons_desc)/sizeof(buttons_desc[0]); i++)
{
//Hi3531的一组GPIO只有一个中断号,一组GPIO有8个pin,所以这里得是共享中断
ret = request_irq(buttons_desc[i].irq, my_buttons_irq, IRQF_SHARED, buttons_desc[i].name, (void*)&buttons_desc[i]);
printk("request_irq %s\n", ret==0?"succeed":"failed");
}
//4、注册input_dev结构体
input_register_device(buttons_dev);
//初始化定时器,用于按键消抖
init_timer(&buttons_timer);
buttons_timer.function = my_buttons_timer_function;
add_timer(&buttons_timer);
printk("my_buttons_init end\n");
return 0;
}
//出口函数
static void __exit my_buttons_exit(void)
{
int i;
printk("my_buttons_exit start\n");
hi3531_virtual_addr_unmap();
//释放申请的按键中断
for(i = 0; i < sizeof(buttons_desc)/sizeof(buttons_desc[0]); i++)
{
free_irq(buttons_desc[i].irq, (void*)&buttons_desc[i]);
}
//删除定时器
del_timer(&buttons_timer);
//注销输入设备
input_unregister_device(buttons_dev);
//释放输入设备内存空间
input_free_device(buttons_dev);
printk("my_buttons_exit end\n");
}
module_init(my_buttons_init);
module_exit(my_buttons_exit);
MODULE_LICENSE("GPL");
将以上驱动程序编译成kernel模块,需事先完整编译一遍kernel代码,如:
该文件命名为xxx.c
在 linux-3.0.y/drivers/input/keyboard/Makefile 加一句
obj-m += xxx.o
把该文件放于 linux-3.0.y/drivers/input/keyboard 目录下
cd linux-3.0.y
make ARCH=arm CROSS_COMPILE=arm-hisiv200-linux- SUBDIRS=./drivers/input/keyboard modules
简单的应用程序如下:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/*
struct input_event {
struct timeval time;
__u16 type; //EV_SYN=0x00,EV_KEY=0x01
__u16 code; //KEY_A,KEY_B,KEY_C
__s32 value;//抬起=0,按下=1,长按=2
};
*/
int main(int argc, char **argv)
{
int fd = 0;
struct input_event buttons_event;
unsigned long cur_ms = 0;
//fd = open("/dev/event0", O_RDWR | O_NONBLOCK);
fd = open("/dev/event0", O_RDWR);
if (fd < 0)
{
printf("can't open!\n");
return -1;
}
while (1)
{
read(fd, &buttons_event, sizeof(struct input_event));
if(buttons_event.type == EV_SYN)
continue;
cur_ms = (buttons_event.time.tv_sec * 1000) + (buttons_event.time.tv_usec/1000);
//打印时间,事件类型,事件码,事件值
printf("cur_ms:%ld type:0x%x code:%d value:%d\n",
cur_ms,
buttons_event.type,
buttons_event.code,
buttons_event.value);
}
return 0;
}
安装驱动后(insmod xxx.ko),执行 cat /proc/interrupts 看一下中断相关情况,可见110这个中断号挂了两个gpio pin (上面的驱动代码就是这样写的)
运行应用程序,效果如下
以上应用程序平时没人按按键的话,就会阻塞在read()函数,不占用CPU资源,比轮询的优秀!
要想识别长按、短按、连发,还得加写逻辑判断和去掉应用程序消抖的动作(已在kernel驱动做了消抖了)。
代码如下:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
// 定义长按键的TICK数, 以及连发间隔的TICK数, 单位是毫秒ms
//#define KEY_DEBOUNCE_PERIOD 20 // 延时消抖已经在kernel驱动做了,应用层不需要做了
#define KEY_LONG_PERIOD 1000
#define KEY_CONTINUE_PERIOD 200
#define TRUE 1
#define FALSE 0
typedef unsigned int Bool;
typedef void (*pf)(void);
typedef enum
{
APP_KEY1 = 0,
APP_KEY2,
APP_KEY3,
APP_KEY_MAX_NUM
} KEY_NUM_E;
typedef enum {
APP_KEY_STATE_INIT = 0,
APP_KEY_STATE_WOBBLE,
APP_KEY_STATE_PRESS,
APP_KEY_STATE_LONG,
APP_KEY_STATE_CONTINUE,
APP_KEY_STATE_RELEASE
} KEY_STATE_E;
void key1DownAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key1LongAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key1ContinueAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key1DownUpAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key1LongUpAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key2DownAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key2LongAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key2ContinueAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key2DownUpAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key2LongUpAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key3DownAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key3LongAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key3ContinueAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key3DownUpAction(void)
{
printf("%s\n", __FUNCTION__);
}
void key3LongUpAction(void)
{
printf("%s\n", __FUNCTION__);
}
typedef struct
{
KEY_NUM_E eKeyId;
unsigned int downTick;
unsigned int upTick;
KEY_STATE_E eKeyCurState; //key cur state(fsm)
Bool bStateChangedFlag; //state changed flag
pf keyDownAction;
pf keyLongAction;
pf keyContinueAction;
pf keyDownUpAction;
pf keyLongUpAction;
} KEY_HANDLE_T;
KEY_HANDLE_T keyList[APP_KEY_MAX_NUM] =
{
{APP_KEY1, 0, 0, APP_KEY_STATE_INIT, FALSE, key1DownAction, key1LongAction, key1ContinueAction, key1DownUpAction, key1LongUpAction},
{APP_KEY2, 0, 0, APP_KEY_STATE_INIT, FALSE, key2DownAction, key2LongAction, key2ContinueAction, key2DownUpAction, key2LongUpAction},
{APP_KEY3, 0, 0, APP_KEY_STATE_INIT, FALSE, key3DownAction, key3LongAction, key3ContinueAction, key3DownUpAction, key3LongUpAction},
};
void keyScan(unsigned long cur_ms, int value, KEY_HANDLE_T *key)
{
if(key == NULL)
{
printf("key == NULL, return\n");
return;
}
switch(key->eKeyCurState)
{
case APP_KEY_STATE_INIT:
if(value == 1)
{
key->downTick = cur_ms;
key->keyDownAction(); //短按
}
if(value)
{
if((cur_ms - key->downTick) >= KEY_LONG_PERIOD)
{
key->bStateChangedFlag = TRUE;
key->eKeyCurState = APP_KEY_STATE_LONG;
}
}
else
{
key->upTick = cur_ms;
key->bStateChangedFlag = TRUE;
key->eKeyCurState = APP_KEY_STATE_INIT;
key->keyDownUpAction(); //短按抬起
}
break;
case APP_KEY_STATE_LONG:
if(TRUE == key->bStateChangedFlag)
{
key->bStateChangedFlag = FALSE;
key->keyLongAction(); //长按
}
if(value)
{
if((cur_ms - key->downTick) >= (KEY_LONG_PERIOD + KEY_CONTINUE_PERIOD))
{
key->downTick = cur_ms;
key->bStateChangedFlag = TRUE;
key->eKeyCurState = APP_KEY_STATE_CONTINUE;
}
}
else
{
key->upTick = cur_ms;
key->bStateChangedFlag = TRUE;
key->eKeyCurState = APP_KEY_STATE_INIT;
key->keyLongUpAction(); //长按抬起
}
break;
case APP_KEY_STATE_CONTINUE:
if(TRUE == key->bStateChangedFlag)
{
key->bStateChangedFlag = FALSE;
key->keyContinueAction(); //连发
}
if(value)
{
if((cur_ms - key->downTick) >= KEY_CONTINUE_PERIOD)
{
key->downTick = cur_ms;
key->bStateChangedFlag = TRUE;
key->eKeyCurState = APP_KEY_STATE_CONTINUE;
}
}
else
{
key->upTick = cur_ms;
key->bStateChangedFlag = TRUE;
key->eKeyCurState = APP_KEY_STATE_INIT;
key->keyLongUpAction(); //长按抬起
}
break;
default:
break;
}
}
/*
struct input_event {
struct timeval time;
__u16 type; //EV_SYN=0x00,EV_KEY=0x01
__u16 code; //KEY_A,KEY_B,KEY_C
__s32 value;//抬起=0,按下=1,长按=2
};
*/
int main(int argc, char **argv)
{
int fd = 0;
struct input_event buttons_event;
KEY_HANDLE_T *curKey = NULL;
unsigned long cur_ms = 0;
//fd = open("/dev/event0", O_RDWR | O_NONBLOCK);
fd = open("/dev/event0", O_RDWR);
if (fd < 0)
{
printf("can't open!\n");
return -1;
}
while (1)
{
read(fd, &buttons_event, sizeof(struct input_event));
if(buttons_event.type == EV_SYN)
continue;
cur_ms = (buttons_event.time.tv_sec * 1000) + (buttons_event.time.tv_usec/1000);
//打印时间,事件类型,事件码,事件值
printf("cur_ms:%ld type:0x%x code:%d value:%d\n",
cur_ms,
buttons_event.type,
buttons_event.code,
buttons_event.value);
// match key struct
switch(buttons_event.code)
{
case KEY_A:
curKey = &keyList[APP_KEY1];
break;
case KEY_B:
curKey = &keyList[APP_KEY2];
break;
case KEY_C:
curKey = &keyList[APP_KEY3];
break;
default:
curKey = NULL;
break;
}
keyScan(cur_ms, buttons_event.value, curKey);
}
return 0;
}
运行该应用程序
短按的情况:
长按的情况:
连发的情况: