- transformer概述
沉墨的夜
transformer深度学习人工智能
Transformer架构的提出,不仅在自然语言处理(NLP)领域掀起了革命,也在多个深度学习任务中获得了广泛应用。自2017年由Vaswani等人提出以来,Transformer经历了多次优化和扩展,成为深度学习领域的基石。以下是Transformer架构的演进历程、作用和意义、架构详情以及未来发展趋势的详细阐述。Transformer架构的演进历程(1)Transformer的起源(2017年
- Pytorch官方文档英语翻译
yanzhiwen2
深度学习Pyrotchpytorch机器学习python人工智能深度学习
深度学习Pytorch-Pytorch官方文档英语翻译1.a-e1.1span跨度1.2blended混合的1.3criterion标准1.4deprecated弃用的1.5clamp钳制1.6arbitraryshapes任意形状1.7explodinggradients梯度爆炸1.8converge收敛1.9approximate近似1.10arg参数1.11argument参数1.12con
- PyTorch实战深度学习——用CNN进行手写数字识别
一位小说男主
人工智能入门深度学习
用CNN进行手写数字识别---计算机专业研究生的代码第一课,相当于”HelloWorld“,不管以后选择什么研究方向,都值得一看,欢迎大家留言交流学习!下面手把手教大家一步一步实现该任务:1.环境准备首先呢,您需要确保安装了PyTorch库。如果还没有安装,可以使用以下命令进行安装,这里默认您已经有Anaconda并创建好虚拟环境啦,如果还没有安装,可以参考其他更完整的安装pytorch的教程:p
- 推荐学习图像处理的入门书:《Python图像处理实战》
天飓
学习感悟学习图像处理python
《Python图像处理实战》是一本全面介绍Python图像处理技术的实用指南,是由人民邮电出版社于2020年12月出版。这本书的作者桑迪潘·戴伊是一位兴趣广泛的数据科学家,主要研究机器学习、深度学习、图像处理和计算机视觉。在《Python图像处理实战》一书中,作者主要介绍了如何用Python图像处理库(如PIL、python-opencv、Scipy等),机器学习库(scikit-learn)和深
- 【深度学习】计算机视觉(CV)-图像分类-ResNet(Residual Network,残差网络)
IT古董
深度学习人工智能深度学习计算机视觉分类
ResNet(ResidualNetwork,残差网络)是一种深度卷积神经网络(CNN)架构,由何恺明(KaimingHe)等人在2015年提出,最初用于ImageNet竞赛,并在分类任务上取得了冠军。ResNet的核心思想是残差学习(ResidualLearning),它通过跳跃连接(SkipConnections)解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得非常深的网络(如50层、1
- 【深度学习基础】什么是注意力机制
我的青春不太冷
深度学习人工智能注意力机制
文章目录一、注意力机制的核心地位:从补充到主导二、技术突破:从Transformer到多模态融合三、跨领域应用:从NLP到通用人工智能四、未来挑战与趋势结语参考链接注意力机制:深度学习的核心革命与未来基石在深度学习的发展历程中,注意力机制(AttentionMechanism)的引入堪称一场革命。它不仅解决了传统模型的根本性缺陷,更通过动态聚焦关键信息的能力,重塑了人工智能处理复杂任务的范式。本文
- 【第15章:量子深度学习与未来趋势—15.3 量子深度学习在图像处理、自然语言处理等领域的应用潜力分析】
再见孙悟空_
#【深度学习・探索智能核心奥秘】深度学习机器学习人工智能音视频自然语言处理量子深度学习量子学习未来
一、开篇:为什么我们需要关注这场"量子+AI"的世纪联姻?各位技术爱好者们,今天我们要聊的这个话题,可能是未来十年最值得押注的技术革命——量子深度学习。这不是简单的"1+1=2"的物理叠加,而是一场可能彻底改写AI发展轨迹的范式转移。想象这样一个场景:你现在训练一个GPT-5级别的模型,不需要耗费价值上亿美元的算力资源,不需要等待数周的训练时间,甚至不需要纠结于模型参数是否过拟合。这就是量子深度学
- 【第15章:量子深度学习与未来趋势—15.1 量子计算基础与量子机器学习的发展背景】
再见孙悟空_
#【深度学习・探索智能核心奥秘】机器翻译自然语言处理计算机视觉量子计算人工智能深度学习机器学习
想象一下,你正在用ChatGPT生成一篇小说,突然它卡在"主角穿越虫洞"的情节上——这不是因为想象力枯竭,而是传统计算机的晶体管已经烧到冒烟。当前AI大模型的参数规模每4个月翻一番,但摩尔定律的终结让经典计算机的算力增长首次跟不上AI的进化速度。这时候,量子计算带着它的"超能力"登场了:1台50量子位的量子计算机,处理某些问题的速度可达超级计算机的1亿倍。这场算力革命,正在改写深度学习的游戏规则。
- 基于深度学习YOLOv10的PCB板缺陷检测系统(附完整资源+PySide6界面+训练代码)
人工智能_SYBH
深度学习YOLO人工智能目标检测python
引言:在现代制造业中,电子元件和PCB(印刷电路板)是非常重要的基础设施。PCB缺陷检测是生产过程中至关重要的一步。传统的缺陷检测方法主要依靠人工检查,这不仅效率低,而且容易受到人眼疲劳的影响。随着深度学习技术的不断发展,基于深度学习的自动化缺陷检测已成为研究的热点,尤其是在计算机视觉领域。YOLO(YouOnlyLookOnce)系列算法凭借其高速和高精度的优势,成为了目标检测领域的佼佼者。本文
- 【深度解析】ICLR:人工智能领域的顶级学术会议 | 顶会与SCI期刊的区别全攻略
X_taiyang18
人工智能
【深度解析】ICLR:人工智能领域的顶级学术会议|顶会与SCI期刊的区别全攻略简介在人工智能和机器学习领域,ICLR(InternationalConferenceonLearningRepresentations)被誉为“深度学习的顶级会议”。自2013年由深度学习三巨头中的YoshuaBengio和YannLeCun创办以来,ICLR迅速崛起,成为全球科研人员争相投稿的学术盛会。那么,ICLR
- 使用多模态大语言模型进行深度学习的图像、文本和语音数据增强
数行天下
人工智能语言模型深度学习人工智能自然语言处理
在过去的五年里,研究方向已从传统的机器学习(ML)和深度学习(DL)方法转向利用大语言模型(LLMs),包括多模态方法,用于数据增强,以提高泛化能力,并在训练深度卷积神经网络时防止过拟合。然而,现有的综述文章主要集中于机器学习和深度学习技术或有限的模态(如文本或图像),在涵盖LLM方法的最新进展和多模态应用方面仍存在空白。本文通过探索利用多模态LLMs进行图像、文本和语音数据增强的最新文献,填补了
- 《深入浅出LLM基础篇》(三):大模型结构分类
GoAI
深入浅出LLM深入浅出AI自然语言处理NLP大模型LLM人工智能transformerchatgpt
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介
- 深入理解TensorFlow中的形状处理函数
SEVEN-YEARS
tensorflow人工智能python
摘要在深度学习模型的构建过程中,张量(Tensor)的形状管理是一项至关重要的任务。特别是在使用TensorFlow等框架时,确保张量的形状符合预期是保证模型正确运行的基础。本文将详细介绍几个常用的形状处理函数,包括get_shape_list、reshape_to_matrix、reshape_from_matrix和assert_rank,并通过具体的代码示例来展示它们的使用方法。1.引言在深
- 数字内容体验未来趋势:五大平台横向对比与深度解析
清风徐徐de来
其他
内容概要当前,企业数字化转型的核心战场正逐步向数字内容体验的精细化运营转移。随着用户行为碎片化与需求多元化趋势加剧,AI驱动的智能推荐系统、基于数据决策的动态优化能力,以及跨渠道的品牌一致性维护,已成为衡量内容平台竞争力的三大核心维度。本文将围绕这三大支柱,通过横向对比主流平台的技术架构与落地实践,揭示未来数字内容体验的演进方向。首先,AI驱动不仅改变了内容分发的效率,更通过深度学习算法实现用户行
- DeepSeek底层揭秘——多头潜在注意力MLA
9命怪猫
AIai人工智能大模型
目录1.多头潜在注意力(MLA)2.核心功能3.技术要素4.难点挑战暨含解决方案5.技术路径6.应用场景7.实际案例:DeepSeek8.最新研究与技术进展9.未来趋势猫哥说1.多头潜在注意力(MLA)(1)定义“多头潜在注意力(Multi-HeadLatentAttention,MLA)”是一种基于注意力机制的深度学习方法,旨在通过多个注意力头(Multi-HeadAttention)对潜在空间
- 第2节课:深度学习基础python代码
Lips611
李哥深度学习python深度学习神经网络
目录编译环境:代码:文件:ds_0.py小结:python声明不需要定义,整型和浮点型都是直接给予值,字符串的[-2]代表是列表倒数的某值;同一列表里面可以有各种类型的变量;哈希表的键值对在打印时是调用字典[key],然后输出对应的value文件:judge_0.py小结:python相对于c语言,是将()换成空格和“:”,与此同时判断语句if和else的缩进不同对应着不同层次的判定条件,约等于“
- 深度学习在蛋白质-蛋白质相互作用(PPI)领域的研究进展(2022-2025)
AndrewHZ
深度学习人工智能transformer算法科技
一、蛋白质-蛋白质相互作用(PPI)的定义与生物学意义蛋白质-蛋白质相互作用(Protein-ProteinInteraction,PPI)是指两个或多个蛋白质通过物理结合形成复合物,进而调控细胞信号传导、代谢、免疫应答等生命活动的过程。PPI是生物体内复杂功能网络的核心,例如酶与底物的结合、抗体与抗原的识别、受体与配体的信号传递等均依赖于此。据估计,人类蛋白质组中约80%的功能通过PPI实现,其
- DeepSeek 引领的 AI 范式转变与存储架构的演进
星辰@Sea
人工智能其他人工智能
引言在过去的几十年中,人工智能(AI)技术经历了翻天覆地的变化,从最初的符号主义到连接主义,再到现在的深度学习,每一次技术革新都推动了AI能力的显著提升。而在这场变革中,DeepSeek作为一股不可忽视的力量,正在引领AI范式的转变,并深刻影响着存储架构的发展。在这篇博客中,我们将深入探讨DeepSeek如何推动AI范式的转变,以及这种转变对存储架构带来的深远影响。通过分析当前AI技术的发展趋势,
- 第N11周:seq2seq翻译实战-Pytorch复现
计算机真好丸
pytorch人工智能python
文章目录一、前期准备1.搭建语言类2.文本处理函数3.文件读取函数二、Seq2Seq模型1.编码器(encoder)2.解码器(decoder)三、训练1.数据预处理2.训练函数3.评估四、评估与训练1.Loss图2.可视化注意力五、总结本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备from__future__importunicode_literals,print_fu
- 第N5周:Pytorch文本分类入门
计算机真好丸
pytorch分类人工智能
文章目录一、前期准备1.环境安装2.加载数据3.构建词典4.生成数据批次和迭代器二、准备模型1.定义模型2.定义实例三、训练模型1.拆分数据集并运行模型2.使用测试数据集评估模型本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备1.环境安装确保安装了torchtext与portalocker库2.加载数据importtorch#强制使用CPUdevice=torch.devi
- 第TR5周:Transformer实战:文本分类
计算机真好丸
transformer分类深度学习
文章目录1.准备环境1.1环境安装1.2加载数据2.数据预处理2.1构建词典2.2生成数据批次和迭代器2.3构建数据集3.模型构建3.1定义位置编码函数3.2定义Transformer模型3.3初始化模型3.4定义训练函数3.5定义评估函数4.训练模型4.1模型训练5.总结:本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.准备环境1.1环境安装这是一个使用PyTorch通过Tran
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统_bert+lstm
2301_76348014
程序员深度学习大数据知识图谱
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- DeepSeek进阶开发与应用1:DeepSeek框架概述与基础应用
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用spring自然语言处理
引言在当今的人工智能领域,深度学习技术已经成为了推动技术进步的核心动力之一。DeepSeek作为一个先进的深度学习框架,旨在为开发者和研究人员提供一个高效、灵活且易于扩展的平台,以便于他们能够快速地实现和部署各种深度学习模型。本文将深入探讨DeepSeek框架的核心架构、基础应用以及如何通过代码实现一个简单的深度学习模型。DeepSeek框架概述DeepSeek框架的设计理念是简洁而强大。它提供了
- DeepSeek+WPS/Office手把手教你玩转智能办公
herosunly
DeepSeek从入门到精通deepseek大模型人工智能officewps智能办公
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法Q大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 使用Python实现深度学习模型:知识蒸馏与模型压缩
Echo_Wish
Python笔记从零开始学Python人工智能Python算法python深度学习开发语言
在深度学习领域,模型的大小和计算复杂度常常是一个挑战。知识蒸馏(KnowledgeDistillation)和模型压缩(ModelCompression)是两种有效的技术,可以在保持模型性能的同时减少模型的大小和计算需求。本文将详细介绍如何使用Python实现这两种技术。目录引言知识蒸馏概述模型压缩概述实现步骤数据准备教师模型训练学生模型训练(知识蒸馏)模型压缩代码实现结论1.引言在实际应用中,深
- 深度学习框架探秘|TensorFlow vs PyTorch:AI 框架的巅峰对决
紫雾凌寒
智启前沿:AI洞察・创未来人工智能深度学习tensorflowpytorchai
在深度学习框架中,TensorFlow和PyTorch无疑是两大明星框架。前面两篇文章我们分别介绍了TensorFlow(点击查看)和PyTorch(点击查看)。它们引领着AI开发的潮流,吸引着无数开发者投身其中。但这两大框架究竟谁更胜一筹?是TensorFlow的全面与稳健,还是PyTorch的灵活与便捷?让我们一同深入剖析,探寻答案。在深度学习框架中,TensorFlow和PyTorch无疑是
- 《深入浅出多模态》 (五):多模态经典模型ALBEF
GoAI
深入浅出多模态多模态大模型LLM深度学习人工智能
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- 轻量级的注意力网络(LANMSFF)模型详解及代码复现
清风AI
深度学习算法详解及代码复现深度学习人工智能神经网络python计算机视觉
定义与特点在深度学习领域,轻量化网络设计已成为一个重要的研究方向。LANMSFF模型作为一种新型的轻量级网络架构,在保持高性能的同时,显著降低了模型的复杂度。LANMSFF模型的核心特点可以概括为以下几个方面:轻量级设计:通过精心设计的网络结构和参数优化,在保持较高性能的同时,显著降低了模型的复杂度。注意力机制:引入了一种新的注意力机制,能够有效地捕捉图像中的关键特征,提高模型的表达能力。多尺度特
- TPAMI 2024 | SSR-2D: 从2D图像进行语义3D场景重建
小白学视觉
论文解读IEEETPAMI深度学习顶刊论文论文解读TPAMI
论文信息题目:SSR-2D:Semantic3DSceneReconstructionFrom2DImagesSSR-2D:从2D图像进行语义3D场景重建作者:JunwenHuang,AlexeyArtemov,YujinChen,ShuaifengZhi,KaiXu,andMatthiasNießner论文创新点首次提出了一种基于深度学习的方法,能够在不使用任何3D标注的情况下,从不完整的RGB
- spiking neural network概念学习
Zaгathustra
科研工作深度学习神经网络机器学习
我们认为,SNNs最大的优势在于其能够充分利用基于时空事件的信息。今天,我们有相当成熟的神经形态传感器,来记录环境实时的动态改变。这些动态感官数据可以与SNNs的时间处理能力相结合,以实现超低能耗的计算。在此类传感器中使用SNNs主要受限于缺乏适当的训练算法,从而可以有效地利用尖峰神经元的时间信息。实际上就精度而言,在大多数学习任务中SNNs的效果仍落后于第二代的深度学习。很明显,尖峰神经元可以实
- JAVA中的Enum
周凡杨
javaenum枚举
Enum是计算机编程语言中的一种数据类型---枚举类型。 在实际问题中,有些变量的取值被限定在一个有限的范围内。 例如,一个星期内只有七天 我们通常这样实现上面的定义:
public String monday;
public String tuesday;
public String wensday;
public String thursday
- 赶集网mysql开发36条军规
Bill_chen
mysql业务架构设计mysql调优mysql性能优化
(一)核心军规 (1)不在数据库做运算 cpu计算务必移至业务层; (2)控制单表数据量 int型不超过1000w,含char则不超过500w; 合理分表; 限制单库表数量在300以内; (3)控制列数量 字段少而精,字段数建议在20以内
- Shell test命令
daizj
shell字符串test数字文件比较
Shell test命令
Shell中的 test 命令用于检查某个条件是否成立,它可以进行数值、字符和文件三个方面的测试。 数值测试 参数 说明 -eq 等于则为真 -ne 不等于则为真 -gt 大于则为真 -ge 大于等于则为真 -lt 小于则为真 -le 小于等于则为真
实例演示:
num1=100
num2=100if test $[num1]
- XFire框架实现WebService(二)
周凡杨
javawebservice
有了XFire框架实现WebService(一),就可以继续开发WebService的简单应用。
Webservice的服务端(WEB工程):
两个java bean类:
Course.java
package cn.com.bean;
public class Course {
private
- 重绘之画图板
朱辉辉33
画图板
上次博客讲的五子棋重绘比较简单,因为只要在重写系统重绘方法paint()时加入棋盘和棋子的绘制。这次我想说说画图板的重绘。
画图板重绘难在需要重绘的类型很多,比如说里面有矩形,园,直线之类的,所以我们要想办法将里面的图形加入一个队列中,这样在重绘时就
- Java的IO流
西蜀石兰
java
刚学Java的IO流时,被各种inputStream流弄的很迷糊,看老罗视频时说想象成插在文件上的一根管道,当初听时觉得自己很明白,可到自己用时,有不知道怎么代码了。。。
每当遇到这种问题时,我习惯性的从头开始理逻辑,会问自己一些很简单的问题,把这些简单的问题想明白了,再看代码时才不会迷糊。
IO流作用是什么?
答:实现对文件的读写,这里的文件是广义的;
Java如何实现程序到文件
- No matching PlatformTransactionManager bean found for qualifier 'add' - neither
林鹤霄
java.lang.IllegalStateException: No matching PlatformTransactionManager bean found for qualifier 'add' - neither qualifier match nor bean name match!
网上找了好多的资料没能解决,后来发现:项目中使用的是xml配置的方式配置事务,但是
- Row size too large (> 8126). Changing some columns to TEXT or BLOB
aigo
column
原文:http://stackoverflow.com/questions/15585602/change-limit-for-mysql-row-size-too-large
异常信息:
Row size too large (> 8126). Changing some columns to TEXT or BLOB or using ROW_FORMAT=DYNAM
- JS 格式化时间
alxw4616
JavaScript
/**
* 格式化时间 2013/6/13 by 半仙
[email protected]
* 需要 pad 函数
* 接收可用的时间值.
* 返回替换时间占位符后的字符串
*
* 时间占位符:年 Y 月 M 日 D 小时 h 分 m 秒 s 重复次数表示占位数
* 如 YYYY 4占4位 YY 占2位<p></p>
* MM DD hh mm
- 队列中数据的移除问题
百合不是茶
队列移除
队列的移除一般都是使用的remov();都可以移除的,但是在昨天做线程移除的时候出现了点问题,没有将遍历出来的全部移除, 代码如下;
//
package com.Thread0715.com;
import java.util.ArrayList;
public class Threa
- Runnable接口使用实例
bijian1013
javathreadRunnablejava多线程
Runnable接口
a. 该接口只有一个方法:public void run();
b. 实现该接口的类必须覆盖该run方法
c. 实现了Runnable接口的类并不具有任何天
- oracle里的extend详解
bijian1013
oracle数据库extend
扩展已知的数组空间,例:
DECLARE
TYPE CourseList IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
-- 初始化数组元素,大小为3
courses := CourseList('Biol 4412 ', 'Psyc 3112 ', 'Anth 3001 ');
--
- 【httpclient】httpclient发送表单POST请求
bit1129
httpclient
浏览器Form Post请求
浏览器可以通过提交表单的方式向服务器发起POST请求,这种形式的POST请求不同于一般的POST请求
1. 一般的POST请求,将请求数据放置于请求体中,服务器端以二进制流的方式读取数据,HttpServletRequest.getInputStream()。这种方式的请求可以处理任意数据形式的POST请求,比如请求数据是字符串或者是二进制数据
2. Form
- 【Hive十三】Hive读写Avro格式的数据
bit1129
hive
1. 原始数据
hive> select * from word;
OK
1 MSN
10 QQ
100 Gtalk
1000 Skype
2. 创建avro格式的数据表
hive> CREATE TABLE avro_table(age INT, name STRING)STORE
- nginx+lua+redis自动识别封解禁频繁访问IP
ronin47
在站点遇到攻击且无明显攻击特征,造成站点访问慢,nginx不断返回502等错误时,可利用nginx+lua+redis实现在指定的时间段 内,若单IP的请求量达到指定的数量后对该IP进行封禁,nginx返回403禁止访问。利用redis的expire命令设置封禁IP的过期时间达到在 指定的封禁时间后实行自动解封的目的。
一、安装环境:
CentOS x64 release 6.4(Fin
- java-二叉树的遍历-先序、中序、后序(递归和非递归)、层次遍历
bylijinnan
java
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;
public class BinTreeTraverse {
//private int[] array={ 1, 2, 3, 4, 5, 6, 7, 8, 9 };
private int[] array={ 10,6,
- Spring源码学习-XML 配置方式的IoC容器启动过程分析
bylijinnan
javaspringIOC
以FileSystemXmlApplicationContext为例,把Spring IoC容器的初始化流程走一遍:
ApplicationContext context = new FileSystemXmlApplicationContext
("C:/Users/ZARA/workspace/HelloSpring/src/Beans.xml&q
- [科研与项目]民营企业请慎重参与军事科技工程
comsci
企业
军事科研工程和项目 并非要用最先进,最时髦的技术,而是要做到“万无一失”
而民营科技企业在搞科技创新工程的时候,往往考虑的是技术的先进性,而对先进技术带来的风险考虑得不够,在今天提倡军民融合发展的大环境下,这种“万无一失”和“时髦性”的矛盾会日益凸显。。。。。。所以请大家在参与任何重大的军事和政府项目之前,对
- spring 定时器-两种方式
cuityang
springquartz定时器
方式一:
间隔一定时间 运行
<bean id="updateSessionIdTask" class="com.yang.iprms.common.UpdateSessionTask" autowire="byName" />
<bean id="updateSessionIdSchedule
- 简述一下关于BroadView站点的相关设计
damoqiongqiu
view
终于弄上线了,累趴,戳这里http://www.broadview.com.cn
简述一下相关的技术点
前端:jQuery+BootStrap3.2+HandleBars,全站Ajax(貌似对SEO的影响很大啊!怎么破?),用Grunt对全部JS做了压缩处理,对部分JS和CSS做了合并(模块间存在很多依赖,全部合并比较繁琐,待完善)。
后端:U
- 运维 PHP问题汇总
dcj3sjt126com
windows2003
1、Dede(织梦)发表文章时,内容自动添加关键字显示空白页
解决方法:
后台>系统>系统基本参数>核心设置>关键字替换(是/否),这里选择“是”。
后台>系统>系统基本参数>其他选项>自动提取关键字,这里选择“是”。
2、解决PHP168超级管理员上传图片提示你的空间不足
网站是用PHP168做的,反映使用管理员在后台无法
- mac 下 安装php扩展 - mcrypt
dcj3sjt126com
PHP
MCrypt是一个功能强大的加密算法扩展库,它包括有22种算法,phpMyAdmin依赖这个PHP扩展,具体如下:
下载并解压libmcrypt-2.5.8.tar.gz。
在终端执行如下命令: tar zxvf libmcrypt-2.5.8.tar.gz cd libmcrypt-2.5.8/ ./configure --disable-posix-threads --
- MongoDB更新文档 [四]
eksliang
mongodbMongodb更新文档
MongoDB更新文档
转载请出自出处:http://eksliang.iteye.com/blog/2174104
MongoDB对文档的CURD,前面的博客简单介绍了,但是对文档更新篇幅比较大,所以这里单独拿出来。
语法结构如下:
db.collection.update( criteria, objNew, upsert, multi)
参数含义 参数  
- Linux下的解压,移除,复制,查看tomcat命令
y806839048
tomcat
重复myeclipse生成webservice有问题删除以前的,干净
1、先切换到:cd usr/local/tomcat5/logs
2、tail -f catalina.out
3、这样运行时就可以实时查看运行日志了
Ctrl+c 是退出tail命令。
有问题不明的先注掉
cp /opt/tomcat-6.0.44/webapps/g
- Spring之使用事务缘由(3-XML实现)
ihuning
spring
用事务通知声明式地管理事务
事务管理是一种横切关注点。为了在 Spring 2.x 中启用声明式事务管理,可以通过 tx Schema 中定义的 <tx:advice> 元素声明事务通知,为此必须事先将这个 Schema 定义添加到 <beans> 根元素中去。声明了事务通知后,就需要将它与切入点关联起来。由于事务通知是在 <aop:
- GCD使用经验与技巧浅谈
啸笑天
GC
前言
GCD(Grand Central Dispatch)可以说是Mac、iOS开发中的一大“利器”,本文就总结一些有关使用GCD的经验与技巧。
dispatch_once_t必须是全局或static变量
这一条算是“老生常谈”了,但我认为还是有必要强调一次,毕竟非全局或非static的dispatch_once_t变量在使用时会导致非常不好排查的bug,正确的如下: 1
- linux(Ubuntu)下常用命令备忘录1
macroli
linux工作ubuntu
在使用下面的命令是可以通过--help来获取更多的信息1,查询当前目录文件列表:ls
ls命令默认状态下将按首字母升序列出你当前文件夹下面的所有内容,但这样直接运行所得到的信息也是比较少的,通常它可以结合以下这些参数运行以查询更多的信息:
ls / 显示/.下的所有文件和目录
ls -l 给出文件或者文件夹的详细信息
ls -a 显示所有文件,包括隐藏文
- nodejs同步操作mysql
qiaolevip
学习永无止境每天进步一点点mysqlnodejs
// db-util.js
var mysql = require('mysql');
var pool = mysql.createPool({
connectionLimit : 10,
host: 'localhost',
user: 'root',
password: '',
database: 'test',
port: 3306
});
- 一起学Hive系列文章
superlxw1234
hiveHive入门
[一起学Hive]系列文章 目录贴,入门Hive,持续更新中。
[一起学Hive]之一—Hive概述,Hive是什么
[一起学Hive]之二—Hive函数大全-完整版
[一起学Hive]之三—Hive中的数据库(Database)和表(Table)
[一起学Hive]之四-Hive的安装配置
[一起学Hive]之五-Hive的视图和分区
[一起学Hive
- Spring开发利器:Spring Tool Suite 3.7.0 发布
wiselyman
spring
Spring Tool Suite(简称STS)是基于Eclipse,专门针对Spring开发者提供大量的便捷功能的优秀开发工具。
在3.7.0版本主要做了如下的更新:
将eclipse版本更新至Eclipse Mars 4.5 GA
Spring Boot(JavaEE开发的颠覆者集大成者,推荐大家学习)的配置语言YAML编辑器的支持(包含自动提示,