Java实现POJ 1017:装箱问题

Java实现POJ 1017:装箱问题_第1张图片


话不多说,直接上代码:

//miss 标注的是我提交Wrong Answer 之后发现的错误

package POJ; //NOTE: delete this line when you submit your answer!

import java.util.*;

public class Main {
	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		while (true) {
			int [] a = new int[6];
			a[0] = in.nextInt();
			a[1] = in.nextInt();
			a[2] = in.nextInt();
			a[3] = in.nextInt();
			a[4] = in.nextInt();
			a[5] = in.nextInt();
			int sum = a[0] + a[1] + a[2] + a[3] + a[4] + a[5];
			if (sum == 0) {
				break;
			}
			int result = calculate(a);
			System.out.println(result);
		}
	}
	
	public static int calculate(int [] a) {
		int p_1 = a[0]; int p_2 = a[1]; int p_3 = a[2];
		int p_4 = a[3]; int p_5 = a[4]; int p_6 = a[5];
		int sum = 0;
		sum = sum + p_6;
		
		//cal_5
		if (p_5 > 0) {
			sum = sum + p_5;
			//cal_1 to make up
			if (p_1 >= (p_5 * 11)) {
				p_1 = p_1 - (p_5 * 11);
			}
			else {p_1 = 0;}
		}
		
		//cal_4
		if (p_4 > 0) {
			sum = sum + p_4;
			//cal_2 to make up
			if (p_2 >= (p_4 * 5)) {
				p_2 = p_2 - (p_4 * 5);
			}
			else {
				int r_num = (20 * p_4) - (4 * p_2);
				p_2 = 0; //miss
				//cal_1 to make up
				if (p_1 >= r_num) {
					p_1 = p_1 - r_num;
				}
				else {p_1 = 0;}
			}
		}
		
		//cal_3
		if (p_3 > 0) {
			sum = sum + (p_3 / 4);
			if (p_3 % 4 == 1) {
				sum++;
				//cal_2 to make up
				if (p_2 >= 5) {
					p_2 = p_2 - 5;
					//cal_1 to make up
					if (p_1 >= 7) {
						p_1 = p_1 - 7;
					}
					else {
						p_1 = 0;
					}
				}
				else {
					int r_num = 27 - (4 * p_2);
					p_2 = 0; //miss
					//cal_1 to make up
					if (p_1 >= r_num) {
						p_1 = p_1 - r_num;
					}
					else {
						p_1 = 0;
					}
				}
			}
			else if (p_3 % 4 == 2) {
				sum++;
				//cal_2 to make up
				if (p_2 >= 3) {
					p_2 = p_2 - 3;
					//cal_1 to make up
					if (p_1 >= 6) {
						p_1 = p_1 -6;
					}
					else {
						p_1 = 0;
					}
				}
				else {
					int r_num = 18 - (4 * p_2);
					p_2 = 0; // miss
					//cal_1 to make up
					if (p_1 >= r_num) {
						p_1 = p_1 - r_num;
					}
					else {
						p_1 = 0;
					}
				}
			}
			else if (p_3 % 4 == 3) {
				sum++;
				//cal_2 to make up
				if (p_2 >= 1) {
					p_2 = p_2 - 1;
					//cal_1 to make up
					if (p_1 >= 5) {
						p_1 = p_1 -5;
					}
					else {
						p_1 = 0;
					}
				}
				else {
					p_2 = 0;
					//cal_1 to make up
					if (p_1 >= 9) {
						p_1 = p_1 - 9;
					}
					else {p_1 = 0;}
				}
			}
		}
		
		//cal_2
		if (p_2 > 0) {
			sum = sum + (p_2 / 9);
			if (p_2 % 9 != 0) { //miss
				sum++;
				int r_num = 36 - (4 * (p_2 % 9));
				//cal_1 to make up
				if (p_1 >= r_num) {
					p_1 = p_1 - r_num;
				}
				else {p_1 = 0;}
			}
		}
		
		//cal_1
		if (p_1 > 0) {
			sum = sum + (p_1 / 36);
			if (p_1 % 36 != 0) {
				sum++;
			}
		}
		return sum;
	}
}

解题思路:

装箱肯定是要从大盒子开始装,即从6*6的箱子开始到1*1的箱子结束。原则就是,用尽量大的箱子来填满空间(其实本题只涉及到用2*2或1*1的箱子来填充剩余空间)。


6*6箱子:本身占一个单位;

5*5箱子:本身占一个单位,其余用11个1*1的箱子填充;

4*4箱子:本身占一个单位,其余用5个2*2的箱子填充;

3*3箱子:4个占一个单位。故要分四种情况(设其数量为n)考虑:

若(n%4 == 0): 理想情况,没什么要担心的;

若(n%4 == 1): 要用5个2*2和7个1*1的箱子填充;

若(n%4 == 2): 要用3个2*2和6个1*1的箱子填充;

若(n%4 == 3): 要用1个2*2和5个1*1的箱子填充;

2*2箱子:9个占一个单位。其余用1*1的箱子填充;

1*1箱子:36个占一个单位。若无法整除,需要额外的一个箱子。


当然,上面的都是理想情况;即,如果用来填充的2*2的箱子数不够,则需要1*1的箱子来进行替代填充(1*1的箱子也存在用完的情况,这时以后的装箱就不再考虑填充的情况了)。


你可能感兴趣的:(Java)