切比雪夫不等式及其证明

切比雪夫不等式及其证明

本质: 随机变量 X X X偏离 E ( X ) E(X) EX)越大,则其概率越小。

定理 设随机变量 X X X具有数学期望 E ( X ) = μ E(X)=\mu E(X)=μ,方差 D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2,则对 ∀ ϵ ≥ 0 \forall\epsilon\ge0 ϵ0,不等式
P { ∣ X − μ ∣ ≥ ϵ } ≤ σ 2 ϵ 2 P \{ | X- \mu | \ge \epsilon \} \le \frac {\sigma^2}{\epsilon^2} P{Xμϵ}ϵ2σ2
成立。

证明:
只就连续性随机变量的情况来证明。设 X X X的概率密度函数为 f ( x ) f(x) f(x),则有
P { ∣ X = μ ∣ ≥ ϵ } = ∫ ∣ x − μ ∣ ≥ ϵ f ( x ) d x ≤ ∫ ∣ x − μ ∣ ≥ ϵ f ( x ) d x ≤ ∫ ∣ x − μ ∣ ≥ ϵ ∣ x − μ ∣ 2 ϵ 2 f ( x ) d x ≤ 1 ϵ 2 ∫ − ∞ + ∞ ( x − μ ) 2 f ( x ) d x = σ 2 ϵ 2 P \{ |X=\mu|\ge\epsilon \} = \int _{|x-\mu|\ge\epsilon} f(x)dx \\ \le \int _{|x-\mu|\ge\epsilon}f(x)dx \\ \le \int _{|x-\mu|\ge\epsilon} \frac {|x-\mu|^2} {\epsilon^2}f(x)dx \\ \le \frac {1} {\epsilon^2} \int _{- \infty} ^{+ \infty} (x- \mu)^2f(x)dx \\ =\frac {\sigma^2} {\epsilon^2} P{X=μϵ}=xμϵf(x)dxxμϵf(x)dxxμϵϵ2xμ2f(x)dxϵ21+(xμ)2f(x)dx=ϵ2σ2
另一种形式:

P { ∣ X − μ ∣ < ϵ } ≥ 1 − σ 2 ϵ 2 P\{ |X-\mu| <\epsilon\} \ge1-\frac{\sigma^2} {\epsilon^2} P{Xμ<ϵ}1ϵ2σ2

意义: 随机变量 分 布 未 知 \color{red}{分布未知} 仅 知 E ( X ) 和 D ( X ) \color{red}{仅知E(X)和D(X)} E(X)D(X)情况下估计概率 P { ∣ X − E ( X ) ∣ < ϵ } P\{ |X-E(X)|<\epsilon\} P{XE(X)<ϵ}的界限

你可能感兴趣的:(数学,数学)