自相关(ACF)与偏自相关(PACF)(2)

§3.The Autocorrelation Function for MA(1) Process
Consider the MA(1) process:
y t = ε t + β ε t − 1 y_t=\varepsilon_t+\beta\varepsilon_{t-1} yt=εt+βεt1

We can apply the Yule-Walker equations to derive(注意: { y t } \{y_t\} {yt}为白噪声序列的线性组合,是平稳的):
γ 0 = E y t y t = E [ ( ε t + β ε t − 1 ) ( ε t + β ε t − 1 ) ] = ( 1 + β 2 ) σ 2 \gamma_0=Ey_ty_t=E[(\varepsilon_t+\beta\varepsilon_{t-1})(\varepsilon_t+\beta\varepsilon_{t-1})]=(1+\beta^2)\sigma^2 γ0=Eytyt=E[(εt+βεt1)(εt+βεt1)]=(1+β2)σ2
γ 1 = E y t y t − 1 = E [ ( ε t + β ε t − 1 ) ( ε t − 1 + β ε t − 2 ) ] = β σ 2 \gamma_1=Ey_ty_{t-1}=E[(\varepsilon_t+\beta\varepsilon_{t-1})(\varepsilon_{t-1}+\beta\varepsilon_{t-2})]=\beta\sigma^2 γ1=Eytyt1=E[(εt+βεt1)(εt1+βεt2)]=βσ2
and
γ s = E [ ( ε t + β ε t − 1 ) ( ε t − s + β ε t − s − 1 ) ] = 0 , f o r   a l l   s > 1 \gamma_s=E[(\varepsilon_t+\beta\varepsilon_{t-1})(\varepsilon_{t-s}+\beta\varepsilon_{t-s-1})]=0,for\, all\, s>1 γs=E[(εt+βεt1)(εts+βεts1)]=0,foralls>1
Hence, ρ 0 = 1 , ρ 1 = β / ( 1 + β 2 ) \rho_0=1,\rho_1=\beta/(1+\beta^2) ρ0=1,ρ1=β/(1+β2), ρ s = 0 , f o r   a l l   s > 1 \rho_s=0,for\, all\, s>1 ρs=0,foralls>1

你可能感兴趣的:(自相关(ACF)与偏自相关(PACF)(2))