首先make_pair
Pairs
C++标准程序库中凡是“必须返回两个值”的函数, 也都会利用pair对象
class
pair可以将两个值视为一个单元。容器类别map和multimap就是使用pairs来管理其健值/实值(key/va
lue)的成对元素。
pair被定义为struct,因此可直接存取pair中的个别值.
两个pairs互相比较时, 第一个元素正具有较高的优先级.
例:
namespace std{
template
bool operator< (const pair
return x.first
}
make_pair():
无需写出型别, 就可以生成一个pair对象
例:
std::make_pair(42, '@');
而不必费力写成:
std::pair
当有必要对一个接受pair参数的函数传递两个值时, make_pair()尤其显得方便,
void f(std::pair
void foo{
f(std::make_pair(42, '@')); //pass two values as pair
}
1 pair的应用
pair是将2个数据组合成一个数据,当需要这样的需求时就可以使用pair,如stl中的map就是将key和value放在一起来保存。另一个应用是,当一个函数需要返回2个数据的时候,可以选择pair。 pair的实现是一个结构体,主要的两个成员变量是first second 因为是使用struct不是class,所以可以直接使用pair的成员变量。
2 make_pair函数
template pair make_pair(T1 a, T2 b) { return pair(a, b); }
很明显,我们可以使用pair的构造函数也可以使用make_pair来生成我们需要的pair。 一般make_pair都使用在需要pair做参数的位置,可以直接调用make_pair生成pair对象很方便,代码也很清晰。 另一个使用的方面就是pair可以接受隐式的类型转换,这样可以获得更高的灵活度。灵活度也带来了一些问题如:
std::pair
std::make_pair(1, 1.1);
是不同的,第一个就是float,而第2个会自己匹配成double。
map:
Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道。这里说下map内部数据的组织,map内部自建一颗红黑树(一种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,所以在map内部所有的数据都是有序的,后边我们会见识到有序的好处。
下面举例说明什么是一对一的数据映射。比如一个班级中,每个学生的学号跟他的姓名就存在着一一映射的关系,这个模型用map可能轻易描述,很明显学号用int描述,姓名用字符串描述(本篇文章中不用char *来描述字符串,而是采用STL中string来描述),下面给出map描述代码:
Map
1. map的构造函数
map共提供了6个构造函数,这块涉及到内存分配器这些东西,略过不表,在下面我们将接触到一些map的构造方法,这里要说下的就是,我们通常用如下方法构造一个map:
Map
2. 数据的插入
在构造map容器后,我们就可以往里面插入数据了。这里讲三种插入数据的方法:
第一种:用insert函数插入pair数据,下面举例说明(以下代码虽然是随手写的,应该可以在VC和GCC下编译通过,大家可以运行下看什么效果,在VC下请加入这条语句,屏蔽4786警告 #pragma warning (disable:4786) )
#include
#include
#include
Using namespace std;
Int main()
{
Map
mapStudent.insert(pair
mapStudent.insert(pair
mapStudent.insert(pair
map
for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)
{
Cout< } } 第二种:用insert函数插入value_type数据,下面举例说明 #include #include #include Using namespace std; Int main() { Map mapStudent.insert(map mapStudent.insert(map mapStudent.insert(map map for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout< } } 第三种:用数组方式插入数据,下面举例说明 #include #include #include Using namespace std; Int main() { Map mapStudent[1] = “student_one”; mapStudent[2] = “student_two”; mapStudent[3] = “student_three”; map for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout< } } 以上三种用法,虽然都可以实现数据的插入,但是它们是有区别的,当然了第一种和第二种在效果上是完成一样的,用insert函数插入数据,在数据的插入上涉及到集合的唯一性这个概念,即当map中有这个关键字时,insert操作是插入数据不了的,但是用数组方式就不同了,它可以覆盖以前该关键字对应的值,用程序说明 mapStudent.insert(map mapStudent.insert(map 上面这两条语句执行后,map中1这个关键字对应的值是“student_one”,第二条语句并没有生效,那么这就涉及到我们怎么知道insert语句是否插入成功的问题了,可以用pair来获得是否插入成功,程序如下 Pair Insert_Pair = mapStudent.insert(map 我们通过pair的第二个变量来知道是否插入成功,它的第一个变量返回的是一个map的迭代器,如果插入成功的话Insert_Pair.second应该是true的,否则为false。 下面给出完成代码,演示插入成功与否问题 #include #include #include Using namespace std; Int main() { Map Pair Insert_Pair = mapStudent.insert(pair If(Insert_Pair.second == true) { Cout<<”Insert Successfully”< } Else { Cout<<”Insert Failure”< } Insert_Pair = mapStudent.insert(pair If(Insert_Pair.second == true) { Cout<<”Insert Successfully”< } Else { Cout<<”Insert Failure”< } map for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout< } } 大家可以用如下程序,看下用数组插入在数据覆盖上的效果 #include #include #include Using namespace std; Int main() { Map mapStudent[1] = “student_one”; mapStudent[1] = “student_two”; mapStudent[2] = “student_three”; map for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout< } } 3. map的大小 在往map里面插入了数据,我们怎么知道当前已经插入了多少数据呢,可以用size函数,用法如下: Int nSize = mapStudent.size(); 4. 数据的遍历 这里也提供三种方法,对map进行遍历 第一种:应用前向迭代器,上面举例程序中到处都是了,略过不表 第二种:应用反相迭代器,下面举例说明,要体会效果,请自个动手运行程序 #include #include #include Using namespace std; Int main() { Map mapStudent.insert(pair mapStudent.insert(pair mapStudent.insert(pair map for(iter = mapStudent.rbegin(); iter != mapStudent.rend(); iter++) { Cout< } } 第三种:用数组方式,程序说明如下 #include #include #include Using namespace std; Int main() { Map mapStudent.insert(pair mapStudent.insert(pair mapStudent.insert(pair int nSize = mapStudent.size() //此处有误,应该是 for(int nIndex = 1; nIndex <= nSize; nIndex++) for(int nIndex = 0; nIndex < nSize; nIndex++) { Cout< } } 5. 数据的查找(包括判定这个关键字是否在map中出现) 在这里我们将体会,map在数据插入时保证有序的好处。 要判定一个数据(关键字)是否在map中出现的方法比较多,这里标题虽然是数据的查找,在这里将穿插着大量的map基本用法。 这里给出三种数据查找方法 第一种:用count函数来判定关键字是否出现,其缺点是无法定位数据出现位置,由于map的特性,一对一的映射关系,就决定了count函数的返回值只有两个,要么是0,要么是1,出现的情况,当然是返回1了 第二种:用find函数来定位数据出现位置,它返回的一个迭代器,当数据出现时,它返回数据所在位置的迭代器,如果map中没有要查找的数据,它返回的迭代器等于end函数返回的迭代器,程序说明 #include #include #include Using namespace std; Int main() { Map mapStudent.insert(pair mapStudent.insert(pair mapStudent.insert(pair map iter = mapStudent.find(1); if(iter != mapStudent.end()) { Cout<<”Find, the value is ”< } Else { Cout<<”Do not Find”< } } 第三种:这个方法用来判定数据是否出现,是显得笨了点,但是,我打算在这里讲解 Lower_bound函数用法,这个函数用来返回要查找关键字的下界(是一个迭代器) Upper_bound函数用法,这个函数用来返回要查找关键字的上界(是一个迭代器) 例如:map中已经插入了1,2,3,4的话,如果lower_bound(2)的话,返回的2,而upper-bound(2)的话,返回的就是3 Equal_range函数返回一个pair,pair里面第一个变量是Lower_bound返回的迭代器,pair里面第二个迭代器是Upper_bound返回的迭代器,如果这两个迭代器相等的话,则说明map中不出现这个关键字,程序说明 #include #include #include Using namespace std; Int main() { Map mapStudent[1] = “student_one”; mapStudent[3] = “student_three”; mapStudent[5] = “student_five”; map iter = mapStudent.lower_bound(2); { //返回的是下界3的迭代器 Cout< } iter = mapStudent.lower_bound(3); { //返回的是下界3的迭代器 Cout< } iter = mapStudent.upper_bound(2); { //返回的是上界3的迭代器 Cout< } iter = mapStudent.upper_bound(3); { //返回的是上界5的迭代器 Cout< } Pair mapPair = mapStudent.equal_range(2); if(mapPair.first == mapPair.second) cout<<”Do not Find”< } Else { Cout<<”Find”< mapPair = mapStudent.equal_range(3); if(mapPair.first == mapPair.second) cout<<”Do not Find”< } Else { Cout<<”Find”< } 6. 数据的清空与判空 清空map中的数据可以用clear()函数,判定map中是否有数据可以用empty()函数,它返回true则说明是空map 7. 数据的删除 这里要用到erase函数,它有三个重载了的函数,下面在例子中详细说明它们的用法 #include #include #include Using namespace std; Int main() { Map mapStudent.insert(pair mapStudent.insert(pair mapStudent.insert(pair //如果你要演示输出效果,请选择以下的一种,你看到的效果会比较好 //如果要删除1,用迭代器删除 map iter = mapStudent.find(1); mapStudent.erase(iter); //如果要删除1,用关键字删除 Int n = mapStudent.erase(1);//如果删除了会返回1,否则返回0 //用迭代器,成片的删除 //一下代码把整个map清空 mapStudent.earse(mapStudent.begin(), mapStudent.end()); //成片删除要注意的是,也是STL的特性,删除区间是一个前闭后开的集合 //自个加上遍历代码,打印输出吧 } 8. 其他一些函数用法 这里有swap,key_comp,value_comp,get_allocator等函数,感觉到这些函数在编程用的不是很多,略过不表,有兴趣的话可以自个研究 9. 排序 这里要讲的是一点比较高深的用法了,排序问题,STL中默认是采用小于号来排序的,以上代码在排序上是不存在任何问题的,因为上面的关键字是int型,它本身支持小于号运算,在一些特殊情况,比如关键字是一个结构体,涉及到排序就会出现问题,因为它没有小于号操作,insert等函数在编译的时候过不去,下面给出两个方法解决这个问题 第一种:小于号重载,程序举例 #include #include Using namespace std; Typedef struct tagStudentInfo { Int nID; String strName; }StudentInfo, *PStudentInfo; //学生信息 Int main() { int nSize; //用学生信息映射分数 map map StudentInfo studentInfo; studentInfo.nID = 1; studentInfo.strName = “student_one”; mapStudent.insert(pair studentInfo.nID = 2; studentInfo.strName = “student_two”; mapStudent.insert(pair for (iter=mapStudent.begin(); iter!=mapStudent.end(); iter++) cout< } 以上程序是无法编译通过的,只要重载小于号,就OK了,如下: Typedef struct tagStudentInfo { Int nID; String strName; Bool operator < (tagStudentInfo const& _A) const { //这个函数指定排序策略,按nID排序,如果nID相等的话,按strName排序 If(nID < _A.nID) return true; If(nID == _A.nID) return strName.compare(_A.strName) < 0; Return false; } }StudentInfo, *PStudentInfo; //学生信息 第二种:仿函数的应用,这个时候结构体中没有直接的小于号重载,程序说明 #include #include Using namespace std; Typedef struct tagStudentInfo { Int nID; String strName; }StudentInfo, *PStudentInfo; //学生信息 Classs sort { Public: Bool operator() (StudentInfo const &_A, StudentInfo const &_B) const { If(_A.nID < _B.nID) return true; If(_A.nID == _B.nID) return _A.strName.compare(_B.strName) < 0; Return false; } }; Int main() { //用学生信息映射分数 Map StudentInfo studentInfo; studentInfo.nID = 1; studentInfo.strName = “student_one”; mapStudent.insert(pair studentInfo.nID = 2; studentInfo.strName = “student_two”; mapStudent.insert(pair } 10. 另外 由于STL是一个统一的整体,map的很多用法都和STL中其它的东西结合在一起,比如在排序上,这里默认用的是小于号,即less<>,如果要从大到小排序呢,这里涉及到的东西很多,在此无法一一加以说明。 还要说明的是,map中由于它内部有序,由红黑树保证,因此很多函数执行的时间复杂度都是log2N的,如果用map函数可以实现的功能,而STL Algorithm也可以完成该功能,建议用map自带函数,效率高一些。 下面说下,map在空间上的特性,否则,估计你用起来会有时候表现的比较郁闷,由于map的每个数据对应红黑树上的一个节点,这个节点在不保存你的数据时,是占用16个字节的,一个父节点指针,左右孩子指针,还有一个枚举值(标示红黑的,相当于平衡二叉树中的平衡因子),我想大家应该知道,这些地方很费内存了吧,不说了…… 首先make_pair Pairs C++标准程序库中凡是“必须返回两个值”的函数, 也都会利用pair对象 pair可以将两个值视为一个单元。容器类别map和multimap就是使用pairs来管理其健值/实值(key/va lue)的成对元素。 两个pairs互相比较时, 第一个元素正具有较高的优先级. make_pair(): 无需写出型别, 就可以生成一个pair对象 当有必要对一个接受pair参数的函数传递两个值时, make_pair()尤其显得方便, void foo{ 1 pair的应用 pair是将2个数据组合成一个数据,当需要这样的需求时就可以使用pair,如stl中的map就是将key和value放在一起来保存。另一个应用是,当一个函数需要返回2个数据的时候,可以选择pair。 pair的实现是一个结构体,主要的两个成员变量是first second 因为是使用struct不是class,所以可以直接使用pair的成员变量。 2 make_pair函数 template pair make_pair(T1 a, T2 b) { return pair(a, b); } 很明显,我们可以使用pair的构造函数也可以使用make_pair来生成我们需要的pair。 一般make_pair都使用在需要pair做参数的位置,可以直接调用make_pair生成pair对象很方便,代码也很清晰。 另一个使用的方面就是pair可以接受隐式的类型转换,这样可以获得更高的灵活度。灵活度也带来了一些问题如: std::pair std::make_pair(1, 1.1); 是不同的,第一个就是float,而第2个会自己匹配成double。 map: Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道。这里说下map内部数据的组织,map内部自建一颗红黑树(一种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,所以在map内部所有的数据都是有序的,后边我们会见识到有序的好处。 下面举例说明什么是一对一的数据映射。比如一个班级中,每个学生的学号跟他的姓名就存在着一一映射的关系,这个模型用map可能轻易描述,很明显学号用int描述,姓名用字符串描述(本篇文章中不用char *来描述字符串,而是采用STL中string来描述),下面给出map描述代码: Map 1. map的构造函数 map共提供了6个构造函数,这块涉及到内存分配器这些东西,略过不表,在下面我们将接触到一些map的构造方法,这里要说下的就是,我们通常用如下方法构造一个map: Map 2. 数据的插入 在构造map容器后,我们就可以往里面插入数据了。这里讲三种插入数据的方法: 第一种:用insert函数插入pair数据,下面举例说明(以下代码虽然是随手写的,应该可以在VC和GCC下编译通过,大家可以运行下看什么效果,在VC下请加入这条语句,屏蔽4786警告 #pragma warning (disable:4786) ) #include #include #include Using namespace std; Int main() { Map mapStudent.insert(pair mapStudent.insert(pair mapStudent.insert(pair map for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout< } } 第二种:用insert函数插入value_type数据,下面举例说明 #include #include #include Using namespace std; Int main() { Map mapStudent.insert(map mapStudent.insert(map mapStudent.insert(map map for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout< } } 第三种:用数组方式插入数据,下面举例说明 #include #include #include Using namespace std; Int main() { Map mapStudent[1] = “student_one”; mapStudent[2] = “student_two”; mapStudent[3] = “student_three”; map for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout< } } 以上三种用法,虽然都可以实现数据的插入,但是它们是有区别的,当然了第一种和第二种在效果上是完成一样的,用insert函数插入数据,在数据的插入上涉及到集合的唯一性这个概念,即当map中有这个关键字时,insert操作是插入数据不了的,但是用数组方式就不同了,它可以覆盖以前该关键字对应的值,用程序说明 mapStudent.insert(map mapStudent.insert(map 上面这两条语句执行后,map中1这个关键字对应的值是“student_one”,第二条语句并没有生效,那么这就涉及到我们怎么知道insert语句是否插入成功的问题了,可以用pair来获得是否插入成功,程序如下 Pair Insert_Pair = mapStudent.insert(map 我们通过pair的第二个变量来知道是否插入成功,它的第一个变量返回的是一个map的迭代器,如果插入成功的话Insert_Pair.second应该是true的,否则为false。 下面给出完成代码,演示插入成功与否问题 #include #include #include Using namespace std; Int main() { Map Pair Insert_Pair = mapStudent.insert(pair If(Insert_Pair.second == true) { Cout<<”Insert Successfully”< } Else { Cout<<”Insert Failure”< } Insert_Pair = mapStudent.insert(pair If(Insert_Pair.second == true) { Cout<<”Insert Successfully”< } Else { Cout<<”Insert Failure”< } map for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout< } } 大家可以用如下程序,看下用数组插入在数据覆盖上的效果 #include #include #include Using namespace std; Int main() { Map mapStudent[1] = “student_one”; mapStudent[1] = “student_two”; mapStudent[2] = “student_three”; map for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++) { Cout< } } 3. map的大小 在往map里面插入了数据,我们怎么知道当前已经插入了多少数据呢,可以用size函数,用法如下: Int nSize = mapStudent.size(); 4. 数据的遍历 这里也提供三种方法,对map进行遍历 第一种:应用前向迭代器,上面举例程序中到处都是了,略过不表 第二种:应用反相迭代器,下面举例说明,要体会效果,请自个动手运行程序 #include #include #include Using namespace std; Int main() { Map mapStudent.insert(pair mapStudent.insert(pair mapStudent.insert(pair map for(iter = mapStudent.rbegin(); iter != mapStudent.rend(); iter++) { Cout< } } 第三种:用数组方式,程序说明如下 #include #include #include Using namespace std; Int main() { Map mapStudent.insert(pair mapStudent.insert(pair mapStudent.insert(pair int nSize = mapStudent.size() //此处有误,应该是 for(int nIndex = 1; nIndex <= nSize; nIndex++) for(int nIndex = 0; nIndex < nSize; nIndex++) { Cout< } } 5. 数据的查找(包括判定这个关键字是否在map中出现) 在这里我们将体会,map在数据插入时保证有序的好处。 要判定一个数据(关键字)是否在map中出现的方法比较多,这里标题虽然是数据的查找,在这里将穿插着大量的map基本用法。 这里给出三种数据查找方法 第一种:用count函数来判定关键字是否出现,其缺点是无法定位数据出现位置,由于map的特性,一对一的映射关系,就决定了count函数的返回值只有两个,要么是0,要么是1,出现的情况,当然是返回1了 第二种:用find函数来定位数据出现位置,它返回的一个迭代器,当数据出现时,它返回数据所在位置的迭代器,如果map中没有要查找的数据,它返回的迭代器等于end函数返回的迭代器,程序说明 #include #include #include Using namespace std; Int main() { Map mapStudent.insert(pair mapStudent.insert(pair mapStudent.insert(pair map iter = mapStudent.find(1); if(iter != mapStudent.end()) { Cout<<”Find, the value is ”< } Else { Cout<<”Do not Find”< } } 第三种:这个方法用来判定数据是否出现,是显得笨了点,但是,我打算在这里讲解 Lower_bound函数用法,这个函数用来返回要查找关键字的下界(是一个迭代器) Upper_bound函数用法,这个函数用来返回要查找关键字的上界(是一个迭代器) 例如:map中已经插入了1,2,3,4的话,如果lower_bound(2)的话,返回的2,而upper-bound(2)的话,返回的就是3 Equal_range函数返回一个pair,pair里面第一个变量是Lower_bound返回的迭代器,pair里面第二个迭代器是Upper_bound返回的迭代器,如果这两个迭代器相等的话,则说明map中不出现这个关键字,程序说明 #include #include #include Using namespace std; Int main() { Map mapStudent[1] = “student_one”; mapStudent[3] = “student_three”; mapStudent[5] = “student_five”; map iter = mapStudent.lower_bound(2); { //返回的是下界3的迭代器 Cout< } iter = mapStudent.lower_bound(3); { //返回的是下界3的迭代器 Cout< } iter = mapStudent.upper_bound(2); { //返回的是上界3的迭代器 Cout< } iter = mapStudent.upper_bound(3); { //返回的是上界5的迭代器 Cout< } Pair mapPair = mapStudent.equal_range(2); if(mapPair.first == mapPair.second) cout<<”Do not Find”< } Else { Cout<<”Find”< mapPair = mapStudent.equal_range(3); if(mapPair.first == mapPair.second) cout<<”Do not Find”< } Else { Cout<<”Find”< } 6. 数据的清空与判空 清空map中的数据可以用clear()函数,判定map中是否有数据可以用empty()函数,它返回true则说明是空map 7. 数据的删除 这里要用到erase函数,它有三个重载了的函数,下面在例子中详细说明它们的用法 #include #include #include Using namespace std; Int main() { Map mapStudent.insert(pair mapStudent.insert(pair mapStudent.insert(pair //如果你要演示输出效果,请选择以下的一种,你看到的效果会比较好 //如果要删除1,用迭代器删除 map iter = mapStudent.find(1); mapStudent.erase(iter); //如果要删除1,用关键字删除 Int n = mapStudent.erase(1);//如果删除了会返回1,否则返回0 //用迭代器,成片的删除 //一下代码把整个map清空 mapStudent.earse(mapStudent.begin(), mapStudent.end()); //成片删除要注意的是,也是STL的特性,删除区间是一个前闭后开的集合 //自个加上遍历代码,打印输出吧 } 8. 其他一些函数用法 这里有swap,key_comp,value_comp,get_allocator等函数,感觉到这些函数在编程用的不是很多,略过不表,有兴趣的话可以自个研究 9. 排序 这里要讲的是一点比较高深的用法了,排序问题,STL中默认是采用小于号来排序的,以上代码在排序上是不存在任何问题的,因为上面的关键字是int型,它本身支持小于号运算,在一些特殊情况,比如关键字是一个结构体,涉及到排序就会出现问题,因为它没有小于号操作,insert等函数在编译的时候过不去,下面给出两个方法解决这个问题 第一种:小于号重载,程序举例 #include #include Using namespace std; Typedef struct tagStudentInfo { Int nID; String strName; }StudentInfo, *PStudentInfo; //学生信息 Int main() { int nSize; //用学生信息映射分数 map map StudentInfo studentInfo; studentInfo.nID = 1; studentInfo.strName = “student_one”; mapStudent.insert(pair studentInfo.nID = 2; studentInfo.strName = “student_two”; mapStudent.insert(pair for (iter=mapStudent.begin(); iter!=mapStudent.end(); iter++) cout< } 以上程序是无法编译通过的,只要重载小于号,就OK了,如下: Typedef struct tagStudentInfo { Int nID; String strName; Bool operator < (tagStudentInfo const& _A) const { //这个函数指定排序策略,按nID排序,如果nID相等的话,按strName排序 If(nID < _A.nID) return true; If(nID == _A.nID) return strName.compare(_A.strName) < 0; Return false; } }StudentInfo, *PStudentInfo; //学生信息 第二种:仿函数的应用,这个时候结构体中没有直接的小于号重载,程序说明 #include #include Using namespace std; Typedef struct tagStudentInfo { Int nID; String strName; }StudentInfo, *PStudentInfo; //学生信息 Classs sort { Public: Bool operator() (StudentInfo const &_A, StudentInfo const &_B) const { If(_A.nID < _B.nID) return true; If(_A.nID == _B.nID) return _A.strName.compare(_B.strName) < 0; Return false; } }; Int main() { //用学生信息映射分数 Map StudentInfo studentInfo; studentInfo.nID = 1; studentInfo.strName = “student_one”; mapStudent.insert(pair studentInfo.nID = 2; studentInfo.strName = “student_two”; mapStudent.insert(pair } 10. 另外 由于STL是一个统一的整体,map的很多用法都和STL中其它的东西结合在一起,比如在排序上,这里默认用的是小于号,即less<>,如果要从大到小排序呢,这里涉及到的东西很多,在此无法一一加以说明。 还要说明的是,map中由于它内部有序,由红黑树保证,因此很多函数执行的时间复杂度都是log2N的,如果用map函数可以实现的功能,而STL Algorithm也可以完成该功能,建议用map自带函数,效率高一些。 下面说下,map在空间上的特性,否则,估计你用起来会有时候表现的比较郁闷,由于map的每个数据对应红黑树上的一个节点,这个节点在不保存你的数据时,是占用16个字节的,一个父节点指针,左右孩子指针,还有一个枚举值(标示红黑的,相当于平衡二叉树中的平衡因子),我想大家应该知道,这些地方很费内存了吧,不说了……
//by rainfish
{
{
class
pair被定义为struct,因此可直接存取pair中的个别值.
例:
namespace std{
template
bool operator< (const pair
return x.first
}
例:
std::make_pair(42, '@');
而不必费力写成:
std::pair
void f(std::pair
f(std::make_pair(42, '@')); //pass two values as pair
}
//by rainfish
{
{