MT7628/MT7688的PWM驱动相关资料较少,官方的datasheet基本也是一堆寄存器,啃了许久,终于嚼出了味道。由于PWM存在IO口复用的问题,所以要提前配置好GPIO的工作方式,不然你无论怎么掐示波器,都不会出现预计的波形。由于MT7688和MT7628是pin to pin,几乎完全兼容,除了MT7628是2T2R而MT7688是1T1R这个区别,在PWM的设置上是相同,所以MT7688也可以直接参考MT7628的编程手册。
MT7688最多支持四路PWM,分别是pwm_ch0、pwm_ch1、pwm_ch2、pwm_ch3,从MT7688的pin map可知:
由上面如果既要使用网口1的功能,又要使用pwm_ch0、pwm_ch1的功能,那么必须复用到txd1和rxd1上才可以,因为系统默认GPIO14、15的功能是网口1,而GPIO45、46的功能是串口1,所以这里还需对GPIO的模式进行配置,同理pwm_ch2、pwm_ch3也需要进行类似的配置。
选择那几路pwm做为这几个GPIO的功能则需要配置GPIO_MODE寄存器了,由下图可知,GPIO被分为两组,分别为GPIO1与GPIO2,寄存器地址分别为10000060和10000064这在后面驱动编写对GPIO进行初始化的时候会用到。
下图是GPIO1的寄存器配置方式,在此可知,对于PWM的选择只需配置相应的Bit即可。不同的模式通过不同的值进行选择。
以下驱动代码参考了小鱼儿专栏的博文,做了部分修改,修复了几处错误,经测试可以使用。
mt7688_pwm.c
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "mt7688_pwm.h"
MODULE_LICENSE("GPL");
#define RALINK_CLK_CFG 0xB0000030
#define RALINK_AGPIO_CFG 0xB000003C
#define RALINK_GPIOMODE 0xB0000060
#define RALINK_PWM_BASE 0xB0005000
//#define RALINK_CLK_CFG 0x10000030
//#define RALINK_AGPIO_CFG 0x1000003C
//#define RALINK_GPIOMODE 0x10000060
//#define RALINK_PWM_BASE 0x10005000
#define RALINK_PWM_ENABLE RALINK_PWM_BASE
#define PWM_MODE_BIT 15
#define PWM_GVAL_BIT 8
#define PWM_IVAL_BIT 7
enum {
PWM_REG_CON,
PWM_REG_GDUR = 0x0C,
PWM_REG_WNUM = 0x28,
PWM_REG_DWID = 0x2C,
PWM_REG_THRE = 0x30,
PWM_REG_SNDNUM = 0x34,
}PWM_REG_OFF;
#define PWM_NUM 4
u32 PWM_REG[PWM_NUM] = {
(RALINK_PWM_BASE + 0x10), /* pwm0 base */
(RALINK_PWM_BASE + 0x50), /* pwm1 base */
(RALINK_PWM_BASE + 0x90), /* pwm2 base */
(RALINK_PWM_BASE + 0xD0) /* pwm3 base */
};
#define NAME "sooall_pwm"
int pwm_major;
int pwm_minor = 0;
int pwm_device_cnt = 1;
struct cdev pwm_cdev;
static struct class *pwm_class;
static struct device *pwm_device;
spinlock_t pwm_lock;
static void sooall_pwm_cfg(struct pwm_cfg *cfg)
{
u32 value;
unsigned long flags;
u32 basereg;
basereg = PWM_REG[cfg->no];
spin_lock_irqsave(&pwm_lock, flags);
/* 1. set the pwm control register */
value = le32_to_cpu(*(volatile u32 *)(basereg + PWM_REG_CON));
/* old mode */
value |= (1 << PWM_MODE_BIT);
/* set the idel val and guard val */
value &= ~((1 << PWM_IVAL_BIT) | (1 << PWM_GVAL_BIT));
value |= ((cfg->idelval & 0x1) << PWM_IVAL_BIT);
value |= ((cfg->guardval & 0x1) << PWM_GVAL_BIT);
/* set the source clk */
if (cfg->clksrc == PWM_CLK_100KHZ) {
value &= ~(1<<3);
} else {
value |= (1<<3);
}
/* set the clk div */
value &= ~0x7;
value |= (0x7 & cfg->clkdiv);
*(volatile u32 *)(basereg + PWM_REG_CON) = cpu_to_le32(value);
/* 2. set the guard duration val */
value = le32_to_cpu(*(volatile u32 *)(basereg + PWM_REG_GDUR));
value &= ~(0xffff);
value |= (cfg->guarddur & 0xffff);
*(volatile u32 *)(basereg + PWM_REG_GDUR) = cpu_to_le32(value);
/* 3. set the wave num val */
value = le32_to_cpu(*(volatile u32 *)(basereg + PWM_REG_WNUM));
value &= ~(0xffff);
value |= (cfg->wavenum & 0xffff);
*(volatile u32 *)(basereg + PWM_REG_WNUM) = cpu_to_le32(value);
/* 4. set the data width val */
value = le32_to_cpu(*(volatile u32 *)(basereg + PWM_REG_DWID));
value &= ~(0x1fff);
value |= (cfg->datawidth & 0x1fff);
*(volatile u32 *)(basereg + PWM_REG_DWID) = cpu_to_le32(value);
/* 5. set the thresh val */
value = le32_to_cpu(*(volatile u32 *)(basereg + PWM_REG_THRE));
value &= ~(0x1fff);
value |= (cfg->threshold & 0x1fff);
*(volatile u32 *)(basereg + PWM_REG_THRE) = cpu_to_le32(value);
spin_unlock_irqrestore(&pwm_lock, flags);
}
static void sooall_pwm_enable(int no)
{
u32 value;
unsigned long flags;
printk(KERN_INFO NAME "enable pwm%d\n", no);
spin_lock_irqsave(&pwm_lock, flags);
value = le32_to_cpu(*(volatile u32 *)(RALINK_PWM_ENABLE));
value |= (1 << no);
*(volatile u32 *)(RALINK_PWM_ENABLE) = cpu_to_le32(value);
spin_unlock_irqrestore(&pwm_lock, flags);
}
static void sooall_pwm_disable(int no)
{
u32 value;
unsigned long flags;
printk(KERN_INFO NAME "disable pwm%d\n", no);
spin_lock_irqsave(&pwm_lock, flags);
value = le32_to_cpu(*(volatile u32 *)(RALINK_PWM_ENABLE));
value &= ~(1 << no);
*(volatile u32 *)(RALINK_PWM_ENABLE) = cpu_to_le32(value);
spin_unlock_irqrestore(&pwm_lock, flags);
}
static void sooall_pwm_getsndnum(struct pwm_cfg *cfg)
{
u32 value;
unsigned long flags;
u32 regbase = PWM_REG[cfg->no];
spin_lock_irqsave(&pwm_lock, flags);
value = le32_to_cpu(*(volatile u32 *)(regbase + PWM_REG_SNDNUM));
cfg->wavenum = value;
spin_unlock_irqrestore(&pwm_lock, flags);
}
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,35)
long sooall_pwm_ioctl(struct file *file, unsigned int req,
unsigned long arg)
#else
int sooall_pwm_ioctl(struct inode *inode, struct file *file, unsigned int req,
unsigned long arg)
#endif
{
switch (req) {
case PWM_ENABLE:
sooall_pwm_enable(((struct pwm_cfg *)arg)->no);
break;
case PWM_DISABLE:
sooall_pwm_disable(((struct pwm_cfg *)arg)->no);
break;
case PWM_CONFIGURE:
sooall_pwm_cfg((struct pwm_cfg *)arg);
break;
case PWM_GETSNDNUM:
sooall_pwm_getsndnum((struct pwm_cfg *)arg);
break;
default:
return -ENOIOCTLCMD;
}
return 0;
}
static int sooall_pwm_open(struct inode * inode, struct file * filp)
{
return 0;
}
static int sooall_pwm_close(struct inode *inode, struct file *file)
{
return 0;
}
static const struct file_operations pwm_fops = {
.owner = THIS_MODULE,
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,35)
unlocked_ioctl:sooall_pwm_ioctl,
#else
ioctl:sooall_pwm_ioctl,
#endif
.open = sooall_pwm_open,
.release = sooall_pwm_close,
};
static int setup_chrdev(void)
{
dev_t dev;
int err = 0;
if (pwm_major) {
dev = MKDEV(pwm_major, 0);
err = register_chrdev_region(dev, pwm_device_cnt, NAME);
} else {
err = alloc_chrdev_region(&dev, 0, pwm_device_cnt, NAME);
pwm_major = MAJOR(dev);
}
if (err < 0) {
printk(KERN_ERR NAME "get device number failed\n");
return -1;
}
cdev_init(&pwm_cdev, &pwm_fops);
pwm_cdev.owner = THIS_MODULE;
pwm_cdev.ops = &pwm_fops;
err = cdev_add(&pwm_cdev, dev, pwm_device_cnt);
if (err < 0) {
printk(KERN_ERR NAME "cdev_add failed\n");
unregister_chrdev_region(dev, pwm_device_cnt);
return -1;
}
return 0;
}
static void clean_chrdev(void)
{
dev_t dev = MKDEV(pwm_major, 0);
cdev_del(&pwm_cdev);
unregister_chrdev_region(dev, pwm_device_cnt);
}
static void setup_gpio(void)
{
u32 value;
int i = 0;
/* pwm0 pwm1 */
/* enable the pwm clk */
value = le32_to_cpu(*(volatile u32 *)(RALINK_CLK_CFG));
value |= (1 << 31);
*(volatile u32 *)(RALINK_CLK_CFG) = cpu_to_le32(value);
/* set the agpio cfg of ephy_gpio_aio_en */
//value = le32_to_cpu(*(volatile u32 *)(RALINK_AGPIO_CFG));
//value |= (0xF<<17);
//*(volatile u32 *)(RALINK_AGPIO_CFG) = cpu_to_le32(value);
/* set the pwm mode */
//value = le32_to_cpu(*(volatile u32 *)(RALINK_GPIOMODE));
//value &= ~(3 << 28 | 3 << 30);
//*(volatile u32 *)(RALINK_GPIOMODE) = cpu_to_le32(value);
value = le32_to_cpu(*(volatile u32 *)(RALINK_GPIOMODE));
value |= (2 << 24);
*(volatile u32 *)(RALINK_GPIOMODE) = cpu_to_le32(value);
/* disable all the pwm */
for (i = 0; i < PWM_NUM; i++) {
sooall_pwm_disable(i);
}
}
static int sooall_pwm_init(void)
{
int ret = 0;
spin_lock_init(&pwm_lock);
ret = setup_chrdev();
if (ret < 0)
return -1;
pwm_class = class_create(THIS_MODULE, NAME);
if (NULL == pwm_class) {
printk(KERN_ERR NAME "class_create failed\n");
goto dev_clean;
}
pwm_device = device_create(pwm_class, NULL,
MKDEV(pwm_major, pwm_minor), NULL, "sooall_pwm");
if (NULL == pwm_device) {
printk(KERN_ERR NAME "device_create failed\n");
goto class_clean;
}
setup_gpio();
printk(KERN_INFO "sooall pwm init success\n");
return 0;
class_clean:
class_destroy(pwm_class);
dev_clean:
clean_chrdev();
return -1;
}
static void sooall_pwm_exit(void)
{
device_destroy(pwm_class, MKDEV(pwm_major, pwm_minor));
class_destroy(pwm_class);
clean_chrdev();
printk(KERN_INFO "sooall pwm exit\n");
}
module_init(sooall_pwm_init);
module_exit(sooall_pwm_exit);
mt7688_pwm.h
#ifndef _SOOALL_PWM_H_
#define _SOOALL_PWM_H_
/* the source of the clock */
typedef enum {
PWM_CLK_100KHZ,
PWM_CLK_40MHZ
}PWM_CLK_SRC;
/* clock div */
typedef enum {
PWM_CLI_DIV0 = 0,
PWM_CLK_DIV2,
PWM_CLK_DIV4,
PWM_CLK_DIV8,
PWM_CLK_DIV16,
PWM_CLK_DIV32,
PWM_CLK_DIV64,
PWM_CLK_DIV128,
}PWM_CLK_DIV;
struct pwm_cfg {
int no;
PWM_CLK_SRC clksrc;
PWM_CLK_DIV clkdiv;
unsigned char idelval;
unsigned char guardval;
unsigned short guarddur;
unsigned short wavenum;
unsigned short datawidth;
unsigned short threshold;
};
/* ioctl */
#define PWM_ENABLE 0
#define PWM_DISABLE 1
#define PWM_CONFIGURE 2
#define PWM_GETSNDNUM 3
#endif
下载源码
压缩包中包含两个压缩包分别是mt7688_pwm.tar.gz、mt7688_pwm_app.tar.gz,驱动和测试程序。
并解压缩到openwrt 15.01 SDK的Package/下。进行编译即可。
最后附一张成功的图片^_^