Openwrt:基于MT7628/MT7688的PWM驱动

前言

MT7628/MT7688的PWM驱动相关资料较少,官方的datasheet基本也是一堆寄存器,啃了许久,终于嚼出了味道。由于PWM存在IO口复用的问题,所以要提前配置好GPIO的工作方式,不然你无论怎么掐示波器,都不会出现预计的波形。由于MT7688和MT7628是pin to pin,几乎完全兼容,除了MT7628是2T2R而MT7688是1T1R这个区别,在PWM的设置上是相同,所以MT7688也可以直接参考MT7628的编程手册。

寄存器

pwm复用关系

MT7688最多支持四路PWM,分别是pwm_ch0、pwm_ch1、pwm_ch2、pwm_ch3,从MT7688的pin map可知:

  • pwm_ch0、pwm_ch1复用在PAD_MDI_TP_P1和PAD_MDI_TN_P1上,也就是网口1的传输线,再往下看,pwm_ch0、pwm_ch1还复用在txd1、rxd1上,这是串口1
  • pwm_ch2、pwm_ch3复用在PAD_MDI_TP_P2和PAD_MDI_TN_P2上,也就是网口2

Openwrt:基于MT7628/MT7688的PWM驱动_第1张图片

由上面如果既要使用网口1的功能,又要使用pwm_ch0、pwm_ch1的功能,那么必须复用到txd1和rxd1上才可以,因为系统默认GPIO14、15的功能是网口1,而GPIO45、46的功能是串口1,所以这里还需对GPIO的模式进行配置,同理pwm_ch2、pwm_ch3也需要进行类似的配置。

gpio mode

选择那几路pwm做为这几个GPIO的功能则需要配置GPIO_MODE寄存器了,由下图可知,GPIO被分为两组,分别为GPIO1与GPIO2,寄存器地址分别为10000060和10000064这在后面驱动编写对GPIO进行初始化的时候会用到。
这里写图片描述

下图是GPIO1的寄存器配置方式,在此可知,对于PWM的选择只需配置相应的Bit即可。不同的模式通过不同的值进行选择。
Openwrt:基于MT7628/MT7688的PWM驱动_第2张图片

代码

以下驱动代码参考了小鱼儿专栏的博文,做了部分修改,修复了几处错误,经测试可以使用。

mt7688_pwm.c

#include   
#include   
#include   
#include   
#include   
#include   
#include   
#include   
#include   
#include   
#include            
#include   
#include     
#include   
#include   
#include      
#include   
#include   

#include "mt7688_pwm.h"

MODULE_LICENSE("GPL");  

#define RALINK_CLK_CFG    0xB0000030   
#define RALINK_AGPIO_CFG  0xB000003C  
#define RALINK_GPIOMODE   0xB0000060   

#define RALINK_PWM_BASE   0xB0005000

//#define RALINK_CLK_CFG    0x10000030   
//#define RALINK_AGPIO_CFG  0x1000003C  
//#define RALINK_GPIOMODE   0x10000060   
//#define RALINK_PWM_BASE   0x10005000      
#define RALINK_PWM_ENABLE    RALINK_PWM_BASE   

#define PWM_MODE_BIT      15   
#define PWM_GVAL_BIT      8   
#define PWM_IVAL_BIT      7    

enum {  
    PWM_REG_CON,  
    PWM_REG_GDUR = 0x0C,  
    PWM_REG_WNUM = 0x28,  
    PWM_REG_DWID = 0x2C,  
    PWM_REG_THRE = 0x30,  
    PWM_REG_SNDNUM = 0x34,  
}PWM_REG_OFF;  

#define PWM_NUM  4   
u32 PWM_REG[PWM_NUM] = {  
    (RALINK_PWM_BASE + 0x10),    /* pwm0 base */  
    (RALINK_PWM_BASE + 0x50),    /* pwm1 base */  
    (RALINK_PWM_BASE + 0x90),    /* pwm2 base */  
    (RALINK_PWM_BASE + 0xD0)     /* pwm3 base */  
};  

#define NAME  "sooall_pwm"  

int pwm_major;  
int pwm_minor  = 0;  
int pwm_device_cnt = 1;  
struct cdev pwm_cdev;  

static struct class  *pwm_class;  
static struct device *pwm_device;  

spinlock_t pwm_lock;  

static void sooall_pwm_cfg(struct pwm_cfg *cfg)  
{  
    u32 value;  
    unsigned long  flags;  
    u32 basereg;  

    basereg = PWM_REG[cfg->no];  

    spin_lock_irqsave(&pwm_lock, flags);  

    /* 1. set the pwm control register */  
    value  = le32_to_cpu(*(volatile u32 *)(basereg + PWM_REG_CON));  
    /* old mode */  
    value |= (1 << PWM_MODE_BIT);  
    /* set the idel val and guard val */  
    value &= ~((1 << PWM_IVAL_BIT) | (1 << PWM_GVAL_BIT));  
    value |= ((cfg->idelval & 0x1) << PWM_IVAL_BIT);  
    value |= ((cfg->guardval & 0x1) << PWM_GVAL_BIT);  
    /* set the source clk */  
    if (cfg->clksrc == PWM_CLK_100KHZ) {  
        value &= ~(1<<3);       
    } else {  
        value |= (1<<3);    
    }  
    /* set the clk div */  
    value &= ~0x7;  
    value |= (0x7 & cfg->clkdiv);      
    *(volatile u32 *)(basereg + PWM_REG_CON) = cpu_to_le32(value);    

    /* 2. set the guard duration val */  
    value  = le32_to_cpu(*(volatile u32 *)(basereg + PWM_REG_GDUR));  
    value &= ~(0xffff);  
    value |= (cfg->guarddur & 0xffff);  
    *(volatile u32 *)(basereg + PWM_REG_GDUR) = cpu_to_le32(value);   


    /* 3. set the wave num val */  
    value  = le32_to_cpu(*(volatile u32 *)(basereg + PWM_REG_WNUM));  
    value &= ~(0xffff);  
    value |= (cfg->wavenum & 0xffff);  
    *(volatile u32 *)(basereg + PWM_REG_WNUM) = cpu_to_le32(value);   


    /* 4. set the data width val */  
    value  = le32_to_cpu(*(volatile u32 *)(basereg + PWM_REG_DWID));  
    value &= ~(0x1fff);  
    value |= (cfg->datawidth & 0x1fff);  
    *(volatile u32 *)(basereg + PWM_REG_DWID) = cpu_to_le32(value);   


    /* 5. set the thresh  val */  
    value  = le32_to_cpu(*(volatile u32 *)(basereg + PWM_REG_THRE));  
    value &= ~(0x1fff);  
    value |= (cfg->threshold & 0x1fff);  
    *(volatile u32 *)(basereg + PWM_REG_THRE) = cpu_to_le32(value);   

    spin_unlock_irqrestore(&pwm_lock, flags);  
}  

static void sooall_pwm_enable(int no)  
{  
    u32 value;  
    unsigned long  flags;  

    printk(KERN_INFO NAME "enable pwm%d\n", no);  

    spin_lock_irqsave(&pwm_lock, flags);  
    value  = le32_to_cpu(*(volatile u32 *)(RALINK_PWM_ENABLE));  
    value  |= (1 << no);  
    *(volatile u32 *)(RALINK_PWM_ENABLE) = cpu_to_le32(value);    
    spin_unlock_irqrestore(&pwm_lock, flags);  
}  

static void sooall_pwm_disable(int no)  
{  
    u32 value;  
    unsigned long  flags;  

    printk(KERN_INFO NAME "disable pwm%d\n", no);  

    spin_lock_irqsave(&pwm_lock, flags);  
    value  = le32_to_cpu(*(volatile u32 *)(RALINK_PWM_ENABLE));  
    value  &= ~(1 << no);  
    *(volatile u32 *)(RALINK_PWM_ENABLE) = cpu_to_le32(value);    
    spin_unlock_irqrestore(&pwm_lock, flags);  
}

static void sooall_pwm_getsndnum(struct pwm_cfg *cfg)  
{  
    u32 value;  
    unsigned long  flags;  
    u32 regbase = PWM_REG[cfg->no];  

    spin_lock_irqsave(&pwm_lock, flags);  
    value  = le32_to_cpu(*(volatile u32 *)(regbase + PWM_REG_SNDNUM));  
    cfg->wavenum = value;  
    spin_unlock_irqrestore(&pwm_lock, flags);  
}  

#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,35)  
long sooall_pwm_ioctl(struct file *file, unsigned int req,  
        unsigned long arg)  
#else  
int sooall_pwm_ioctl(struct inode *inode, struct file *file, unsigned int req,  
        unsigned long arg)  
#endif  
{  
    switch (req) {  
    case PWM_ENABLE:  
        sooall_pwm_enable(((struct pwm_cfg *)arg)->no);  
        break;  
    case PWM_DISABLE:  
        sooall_pwm_disable(((struct pwm_cfg *)arg)->no);  
        break;  
    case PWM_CONFIGURE:  
        sooall_pwm_cfg((struct pwm_cfg *)arg);  
        break;  
    case PWM_GETSNDNUM:  
        sooall_pwm_getsndnum((struct pwm_cfg *)arg);  
        break;  
    default:  
        return -ENOIOCTLCMD;  
    }  

    return 0;  
}  

static int sooall_pwm_open(struct inode * inode, struct file * filp)  
{  
    return 0;  
}  

static int sooall_pwm_close(struct inode *inode, struct file *file)  
{  
    return 0;  
}  

static const struct file_operations pwm_fops = {  
    .owner      = THIS_MODULE,  
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,35)  
    unlocked_ioctl:sooall_pwm_ioctl,  
#else  
    ioctl:sooall_pwm_ioctl,  
#endif   
    .open       = sooall_pwm_open,  
    .release    = sooall_pwm_close,  
};  

static int setup_chrdev(void)  
{  
    dev_t dev;  
    int err = 0;  

    if (pwm_major) {  
        dev = MKDEV(pwm_major, 0);                
        err = register_chrdev_region(dev, pwm_device_cnt, NAME);  
    } else {  
        err = alloc_chrdev_region(&dev, 0, pwm_device_cnt, NAME);     
        pwm_major = MAJOR(dev);  
    }  

    if (err < 0) {  
        printk(KERN_ERR NAME "get device number failed\n");  
        return -1;  
    }  

    cdev_init(&pwm_cdev, &pwm_fops);  
    pwm_cdev.owner = THIS_MODULE;  
    pwm_cdev.ops = &pwm_fops;     
    err = cdev_add(&pwm_cdev, dev, pwm_device_cnt);  
    if (err < 0) {  
        printk(KERN_ERR NAME "cdev_add failed\n");    
        unregister_chrdev_region(dev, pwm_device_cnt);  
        return -1;    
    }  

    return 0;  
}  

static void clean_chrdev(void)  
{  
    dev_t dev = MKDEV(pwm_major, 0);  

    cdev_del(&pwm_cdev);  
    unregister_chrdev_region(dev, pwm_device_cnt);  
}  

static void setup_gpio(void)  
{  
    u32 value;  
    int i = 0;  
    /* pwm0 pwm1 */  

    /* enable the pwm clk */  
    value  = le32_to_cpu(*(volatile u32 *)(RALINK_CLK_CFG));  
    value  |= (1 << 31);  
    *(volatile u32 *)(RALINK_CLK_CFG) = cpu_to_le32(value);   

    /* set the agpio cfg of ephy_gpio_aio_en */  
    //value  = le32_to_cpu(*(volatile u32 *)(RALINK_AGPIO_CFG));  
    //value  |= (0xF<<17);  
    //*(volatile u32 *)(RALINK_AGPIO_CFG) = cpu_to_le32(value);     

    /* set the pwm  mode */  
    //value  = le32_to_cpu(*(volatile u32 *)(RALINK_GPIOMODE));  
    //value  &= ~(3 << 28 | 3 << 30);  
    //*(volatile u32 *)(RALINK_GPIOMODE) = cpu_to_le32(value);      

   value  = le32_to_cpu(*(volatile u32 *)(RALINK_GPIOMODE));  
   value  |= (2 << 24);  

   *(volatile u32 *)(RALINK_GPIOMODE) = cpu_to_le32(value);         

    /* disable all the pwm */  
    for (i = 0; i < PWM_NUM; i++) {  
        sooall_pwm_disable(i);    
    }        
}  

static int sooall_pwm_init(void)  
{  
    int ret = 0;  

    spin_lock_init(&pwm_lock);  

    ret = setup_chrdev();  
    if (ret < 0)   
        return -1;  

    pwm_class = class_create(THIS_MODULE, NAME);  
    if (NULL == pwm_class) {  
        printk(KERN_ERR NAME "class_create failed\n");    
        goto dev_clean;  
    }  

    pwm_device = device_create(pwm_class, NULL,   
                    MKDEV(pwm_major, pwm_minor), NULL, "sooall_pwm");  
    if (NULL == pwm_device) {  
        printk(KERN_ERR NAME "device_create failed\n");   
        goto class_clean;  
    }  

    setup_gpio();     

    printk(KERN_INFO "sooall pwm init success\n");   
    return 0;  

class_clean:  
    class_destroy(pwm_class);     
dev_clean:  
    clean_chrdev();  
    return -1;  
}  

static void sooall_pwm_exit(void)  
{  
    device_destroy(pwm_class, MKDEV(pwm_major, pwm_minor));  
    class_destroy(pwm_class);     
    clean_chrdev();  
    printk(KERN_INFO "sooall pwm exit\n");  
}  

module_init(sooall_pwm_init);    
module_exit(sooall_pwm_exit);

mt7688_pwm.h

#ifndef _SOOALL_PWM_H_  
#define _SOOALL_PWM_H_  

/* the source of the clock */  
typedef enum {  
    PWM_CLK_100KHZ,    
    PWM_CLK_40MHZ  
}PWM_CLK_SRC;  

/* clock div */  
typedef enum {  
    PWM_CLI_DIV0 = 0,  
    PWM_CLK_DIV2,  
    PWM_CLK_DIV4,  
    PWM_CLK_DIV8,  
    PWM_CLK_DIV16,  
    PWM_CLK_DIV32,  
    PWM_CLK_DIV64,  
    PWM_CLK_DIV128,  
}PWM_CLK_DIV;  

struct pwm_cfg {  
    int no;  
    PWM_CLK_SRC    clksrc;  
    PWM_CLK_DIV    clkdiv;  
    unsigned char  idelval;  
    unsigned char  guardval;  
    unsigned short guarddur;  
    unsigned short wavenum;  
    unsigned short datawidth;  
    unsigned short threshold;  
};  

/* ioctl */  
#define PWM_ENABLE      0  
#define PWM_DISABLE     1    
#define PWM_CONFIGURE   2   
#define PWM_GETSNDNUM   3  
#endif

How to use it?

下载源码
压缩包中包含两个压缩包分别是mt7688_pwm.tar.gzmt7688_pwm_app.tar.gz,驱动和测试程序。
并解压缩到openwrt 15.01 SDK的Package/下。进行编译即可。
最后附一张成功的图片^_^
Openwrt:基于MT7628/MT7688的PWM驱动_第3张图片

你可能感兴趣的:(Linux)