R-时间序列自相关acf,偏自相关pacf

关于自相关、偏自相关:
一、自协方差和自相关系数
      p阶自回归AR(p)
      自协方差 r(t,s)=E[X(t)-EX(t)][X(s)-EX(s)]
      自相关系数ACF=r(s,t)/[(DX(t).DX(s))^0.5]

二、平稳时间序列自协方差与自相关系数
      1、平稳时间序列可以定义r(k)为时间序列的延迟k自协方差函数:
           r(k)=r(t,t+k)=E[X(t)-EX(t)][X(t+k)-EX(t+k)]
      2、平稳时间序列的方差相等DX(t)=DX(t+k)=σ2,
            所以DX(t)*DX(t+k)=σ2*σ2,
            所以[DX(t)*DX(t+k)]^0.5=σ2
            而r(0)=r(t,t)=E[X(t)-EX(t)][X(t)-EX(t)]=E[X(t)-EX(t)]^2=DX(t)=σ2
         简而言之,r(0)就是自己与自己的协方差,就是方差,
         所以,平稳时间序列延迟k的自相关系数ACF等于:
                p(k)=r(t,t+k)/[(DX(t).DX(t+k))^0.5]=r(k)/σ2=r(k)/r(0)
     3、平稳AR(p)的自相关系数具有两个显著特征:一是拖尾性;二是呈负指数衰减。

 三、偏相关系数
       对于一个平稳AR(p)模型, 求出滞后k自相关系数p(k)时,实际上得到并不是x(t)与x(t-k)之间单纯的相关关系。 因为x(t)同时还会受到中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的影响,而这k-1个随机变量又都和x(t-k)具有相关关系,所以自相关系数p(k)里实际掺杂了其他变量对x(t)与x(t-k)的影响。
       为了能 单纯测度x(t-k)对x(t)的影响 ,引进偏自相关系数的概念。
        对于平稳时间序列{x(t)},所谓滞后k偏自相关系数指在给定中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的条件下,或者说,在剔除了中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的干扰之后,x(t-k)对x(t)影响的相关程度。用数学语言描述就是:
      p[(x(t),x(t-k)]|(x(t-1),……,x(t-k+1)={E[(x(t)-Ex(t)][x(t-k)-Ex(t-k)]}/E{[x(t-k)-Ex(t-k)]^2}
    这就是滞后k偏自相关系数的定义。

四、R中自相关、偏相关检验
举例:
library(tseries)
data<-log(hs300_day$close)
acf(data) #自相关
R-时间序列自相关acf,偏自相关pacf_第1张图片
pacf(data) #偏相关
R-时间序列自相关acf,偏自相关pacf_第2张图片


你可能感兴趣的:(R,R编程,R,R语言,acf自相关,pacf偏相关)