水平有限,描述不当之处还请指出,转载请注明出处http://blog.csdn.net/vanbreaker/article/details/7718158
这节结合even handler来分析设备的注册和打开的过程,在设备注册之前,必须先初始化INPUT子系统,由input_init()函数来完成
static int __init input_init(void)
{
int err;
input_init_abs_bypass();
err = class_register(&input_class);//注册input类
if (err) {
printk(KERN_ERR "input: unable to register input_dev class\n");
return err;
}
err = input_proc_init();//创建/proc中的项
if (err)
goto fail1;
/*注册设备,设备号为INPUT_MAJOR(13),后面注册的输入设备都使用该主设备号*/
err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
if (err) {
printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
goto fail2;
}
return 0;
fail2: input_proc_exit();
fail1: class_unregister(&input_class);
return err;
}
input_fops中只定义了open函数。
static const struct file_operations input_fops = {
.owner = THIS_MODULE,
.open = input_open_file,
};
我们需要在设备驱动层中完成输入设备的注册,通过调用input_register_device()函数来完成,该函数的一个重要任务就是完成设备与事件驱动的匹配。
int input_register_device(struct input_dev *dev)
{
static atomic_t input_no = ATOMIC_INIT(0);
struct input_handler *handler;
const char *path;
int error;
__set_bit(EV_SYN, dev->evbit);
/*
* If delay and period are pre-set by the driver, then autorepeating
* is handled by the driver itself and we don't do it in input.c.
*/
init_timer(&dev->timer);
if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
dev->timer.data = (long) dev;
dev->timer.function = input_repeat_key;
dev->rep[REP_DELAY] = 250;
dev->rep[REP_PERIOD] = 33;
}
/*没有定义设备的getkeycode函数,则使用默认的获取键值函数*/
if (!dev->getkeycode)
dev->getkeycode = input_default_getkeycode;
/*没有定义设备的setkeycode函数,则使用默认的设定键值函数*/
if (!dev->setkeycode)
dev->setkeycode = input_default_setkeycode;
/*设定dev的名字*/
dev_set_name(&dev->dev, "input%ld",
(unsigned long) atomic_inc_return(&input_no) - 1);
/*添加设备*/
error = device_add(&dev->dev);
if (error)
return error;
path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
printk(KERN_INFO "input: %s as %s\n",
dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
kfree(path);
error = mutex_lock_interruptible(&input_mutex);
if (error) {
device_del(&dev->dev);
return error;
}
/*将设备添加到input_dev_list设备链表*/
list_add_tail(&dev->node, &input_dev_list);
/*遍历input_handler_list,试图与每一个handler进行匹配*/
list_for_each_entry(handler, &input_handler_list, node)
input_attach_handler(dev, handler);
input_wakeup_procfs_readers();
mutex_unlock(&input_mutex);
return 0;
}
static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
const struct input_device_id *id;
int error;
/*如果定义了handler的黑名单,并且设备和黑名单中的id匹配了,则该设备不能和handler匹配*/
if (handler->blacklist && input_match_device(handler->blacklist, dev))
return -ENODEV;
id = input_match_device(handler->id_table, dev);
if (!id)
return -ENODEV;
/*执行handler的connect,建立handler与设备之间的联系*/
error = handler->connect(handler, dev, id);
if (error && error != -ENODEV)
printk(KERN_ERR
"input: failed to attach handler %s to device %s, "
"error: %d\n",
handler->name, kobject_name(&dev->dev.kobj), error);
return error;
}
匹配的具体过程:
static const struct input_device_id *input_match_device(const struct input_device_id *id,
struct input_dev *dev)
{
int i;
/*遍历handler的id_table与device进行匹配*/
for (; id->flags || id->driver_info; id++) {
/*根据flags的标志位,按需要匹配相应的字段*/
if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
if (id->bustype != dev->id.bustype)//总线类型不匹配
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)//生产厂商不匹配
if (id->vendor != dev->id.vendor)
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)//产品不匹配
if (id->product != dev->id.product)
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)//版本不匹配
if (id->version != dev->id.version)
continue;
MATCH_BIT(evbit, EV_MAX);//匹配所有的事件类型
/*匹配所有事件的子事件*/
MATCH_BIT(keybit, KEY_MAX);
MATCH_BIT(relbit, REL_MAX);
MATCH_BIT(absbit, ABS_MAX);
MATCH_BIT(mscbit, MSC_MAX);
MATCH_BIT(ledbit, LED_MAX);
MATCH_BIT(sndbit, SND_MAX);
MATCH_BIT(ffbit, FF_MAX);
MATCH_BIT(swbit, SW_MAX);
return id;//匹配成功,返回id
}
return NULL;
}
MATCH_BIT是将device的相应字段和handler的相应字段逐位对比,都一样的话表示成功,否则continue
#define MATCH_BIT(bit, max) \
for (i = 0; i < BITS_TO_LONGS(max); i++) \
if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
break; \
if (i != BITS_TO_LONGS(max)) \
continue;
以event handler为例,看connect函数做了什么:
static int evdev_connect(struct input_handler *handler, struct input_dev *dev,
const struct input_device_id *id)
{
struct evdev *evdev;
int minor;
int error;
/*在evdev_table中找到空闲块,其对应的数组下标再加上EVDEV_MINOR_BASE(64)就是次设备号
每个handler都拥有32个此设备号,也就是最多可以对应32个设备*/
for (minor = 0; minor < EVDEV_MINORS; minor++)
if (!evdev_table[minor])
break;
if (minor == EVDEV_MINORS) {
printk(KERN_ERR "evdev: no more free evdev devices\n");
return -ENFILE;
}
evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);
if (!evdev)
return -ENOMEM;
INIT_LIST_HEAD(&evdev->client_list);
spin_lock_init(&evdev->client_lock);
mutex_init(&evdev->mutex);
init_waitqueue_head(&evdev->wait);
/*初始化evdev的内部变量*/
snprintf(evdev->name, sizeof(evdev->name), "event%d", minor);
evdev->exist = 1;
evdev->minor = minor;
/*初始化handle,每个evdev中都有一个handle*/
evdev->handle.dev = input_get_device(dev);
evdev->handle.name = evdev->name;
evdev->handle.handler = handler;
evdev->handle.private = evdev;
/*初始化evdev中的内嵌device*/
dev_set_name(&evdev->dev, evdev->name);
evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor);
evdev->dev.class = &input_class;
evdev->dev.parent = &dev->dev;
evdev->dev.release = evdev_free;
device_initialize(&evdev->dev);
/*注册handle,主要将handle链接到input_dev和handler的h_list链表中去*/
error = input_register_handle(&evdev->handle);
if (error)
goto err_free_evdev;
/*将evdev存入evdev_table数组*/
error = evdev_install_chrdev(evdev);
if (error)
goto err_unregister_handle;
error = device_add(&evdev->dev);
if (error)
goto err_cleanup_evdev;
return 0;
err_cleanup_evdev:
evdev_cleanup(evdev);
err_unregister_handle:
input_unregister_handle(&evdev->handle);
err_free_evdev:
put_device(&evdev->dev);
return error;
}
至此设备的注册完成!对应event handler,在/dev中将多出一个event(x)设备文件,对应一个evdev实例,应用程序打开它的话也就意味着通过event handler来和设备驱动层传递事件。
再来看打开设备的过程,还是以event handler为例,假如打开一个event(x),则先执行:
static int input_open_file(struct inode *inode, struct file *file)
{
struct input_handler *handler;
const struct file_operations *old_fops, *new_fops = NULL;
int err;
lock_kernel();
/* No load-on-demand here? */
/*32个设备是共用一个handler的,通过此设备号得到设备对应的handler*/
handler = input_table[iminor(inode) >> 5];
if (!handler || !(new_fops = fops_get(handler->fops))) {
err = -ENODEV;
goto out;
}
/*
* That's _really_ odd. Usually NULL ->open means "nothing special",
* not "no device". Oh, well...
*/
if (!new_fops->open) {
fops_put(new_fops);
err = -ENODEV;
goto out;
}
old_fops = file->f_op;
/*定位fops*/
file->f_op = new_fops;
err = new_fops->open(inode, file);
if (err) {
fops_put(file->f_op);
file->f_op = fops_get(old_fops);
}
fops_put(old_fops);
out:
unlock_kernel();
return err;
}
通过此设备号所在的组(0~31),(32~63),(64~95)……就可以找到相应的handler,所有的handler都保存在input_table中,对于次设备号在64~95范围的设备,将定位到下标为2的handler,,也就是event handler,然后将用handler中的open函数替代之前的open函数,并执行新的open函数,这样就以handler本身定义的open来打开设备完成相应的初始化了。
event handler中的open函数:
static int evdev_open(struct inode *inode, struct file *file)
{
struct evdev *evdev;
struct evdev_client *client;
int i = iminor(inode) - EVDEV_MINOR_BASE;
int error;
if (i >= EVDEV_MINORS)
return -ENODEV;
error = mutex_lock_interruptible(&evdev_table_mutex);
if (error)
return error;
/*从evdev_table中取出和此设备号对应的evdev实例*/
evdev = evdev_table[i];
if (evdev)
get_device(&evdev->dev);
mutex_unlock(&evdev_table_mutex);
if (!evdev)
return -ENODEV;
/*每当一个应用程序打开该文件都会生成一个client*/
client = kzalloc(sizeof(struct evdev_client), GFP_KERNEL);
if (!client) {
error = -ENOMEM;
goto err_put_evdev;
}
spin_lock_init(&client->buffer_lock);
client->evdev = evdev;
/*将client链入evdev的client_list中*/
evdev_attach_client(evdev, client);
error = evdev_open_device(evdev);
if (error)
goto err_free_client;
file->private_data = client;
return 0;
err_free_client:
evdev_detach_client(evdev, client);
kfree(client);
err_put_evdev:
put_device(&evdev->dev);
return error;
}
static int evdev_open_device(struct evdev *evdev)
{
int retval;
retval = mutex_lock_interruptible(&evdev->mutex);
if (retval)
return retval;
if (!evdev->exist)
retval = -ENODEV;
else if (!evdev->open++) {/*如果是第一次打开该设备,则要执行设备中定义的open*/
retval = input_open_device(&evdev->handle);
if (retval)
evdev->open--;
}
mutex_unlock(&evdev->mutex);
return retval;
}
int input_open_device(struct input_handle *handle)
{
struct input_dev *dev = handle->dev;
int retval;
retval = mutex_lock_interruptible(&dev->mutex);
if (retval)
return retval;
if (dev->going_away) {
retval = -ENODEV;
goto out;
}
handle->open++;
if (!dev->users++ && dev->open)
retval = dev->open(dev);//执行input_dev中定义的open,完成设备的初始化
if (retval) {
dev->users--;
if (!--handle->open) {
/*
* Make sure we are not delivering any more events
* through this handle
*/
synchronize_rcu();
}
}
out:
mutex_unlock(&dev->mutex);
return retval;
}