下面的链接提供了较新版本的源码
ver4.0源码下载:u-boot for tiny210 ver4.0
ver3.1源码下载: u-boot for tiny210 ver3.1
ver3.0源码下载:u-boot for tiny 210 ver3.0
ver2.2源码下载: u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.1
ver2.0源码下载:u-boot for tiny210 ver2.0
2. 从SD卡的FAT分区上加载文件到SDRAM
3. 将环境变量保存至SD卡(有Writing to MMC(0)... mmc_send_cmd: error during transfer: 0x00208001 mmc write failed), 但数据保存是成功的,后续会修改。
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- tiny210_config
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- all spl
由于我的系统下装有两套交叉工具链,所以没有把 /opt/FriendlyARM/toolschain/4.5.1/bin/ 添加到环境变量,在使用工具链时要指明路径。
将SD卡通过读卡器接上电脑(或直接插入笔记本卡槽),通过"cat /proc/partitions"找出SD卡对应的设备,我的设备节点是/dev/sdb.
执行下面的命令
$sudo dd iflag=dsync oflag=dsync if=spl/tiny210-spl.bin of=/dev/sdb seek=1
$sudo dd iflag=dsync oflag=dsync if=u-boot.bin of=/dev/sdb seek=49
u-boot for tiny210 version2.0(by liukun321咕唧咕唧)
version2.0是根据我上一个版本的uboot修改而来的,可以下载源码u-boot for tiny210 version1 后参照下面的内容进行修改 。
ver2.1源码下载:u-boot for tiny210 ver2.1
ver1.0源码下载:u-boot for tiny210 ver1.0
2. 从SD卡的FAT分区上加载文件到SDRAM
3. 将环境变量保存至SD卡(有Writing to MMC(0)... mmc_send_cmd: error during transfer: 0x00208001 mmc write failed), 但数据保存是成功的,后续会修改。
网络部分修改过程:
1. 在include/configs/tiny210.h 添加下述宏
红字部分与dm9000 相关的关键内容. 下面对关键部分作简要分析:
另外根据友善提供的linux-2.6.35 内核,参考其中dm9000的初始化配置,
#define S5PV210_PA_DM9000_A (0x88001000)
#define S5PV210_PA_DM9000_F (S5PV210_PA_DM9000_A + 0x300C)
static struct resource dm9000_resources[] = {
[0] = {
.start = S5PV210_PA_DM9000_A,
.end = S5PV210_PA_DM9000_A + SZ_1K*4 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = S5PV210_PA_DM9000_F,
.end = S5PV210_PA_DM9000_F + SZ_1K*4 - 1,
.flags = IORESOURCE_MEM,
},
[2] = {
.start = IRQ_EINT(7),
.end = IRQ_EINT(7),
.flags = IORESOURCE_IRQ | IORESOURCE_IRQ_HIGHLEVEL,
},
};
可以分别得到
2.修改common/cmd_date.c
(3)243:添加int board_eth_init(bd_t *bis)函数
3.修改driver/net/dm9000x.c
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- tiny210_config
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- all spl
由于我的系统下装有两套交叉工具链,所以没有把 /opt/FriendlyARM/toolschain/4.5.1/bin/ 添加到环境变量,在使用工具链时要指明路径。
将SD卡通过读卡器接上电脑(或直接插入笔记本卡槽),通过"cat /proc/partitions"找出SD卡对应的设备,我的设备节点是/dev/sdb.
执行下面的命令
$sudo dd iflag=dsync oflag=dsync if=spl/tiny210-spl.bin of=/dev/sdb seek=1
$sudo dd iflag=dsync oflag=dsync if=u-boot.bin of=/dev/sdb seek=49
前两次修改的u-boot写SD卡的过程存在问题,虽然保存环境变量到SD能够成功,但是会有Writing to MMC(0)... mmc_send_cmd: error during transfer: 0x00208001 mmc write failed,这样的提示。而且每次启动只能够保存一次环境变量,若再次写SD卡会有failed提示并无法保存。这一次更新修复了这两个bug。
ver2.1源码下载:u-boot for tiny210 ver2.1
下面的链接提供了前两次修改的源码
ver1.0源码下载:u-boot for tiny210 ver1.0
ver2.0源码下载:u-boot for tiny210 ver2.0
你还可以参考下面两篇blog从头构建自己的u-boot for tiny210
ver1.0 ver2.0
ver2.1的基本功能:
1. SD boot,基于linaro u-boot的SPL功能实现
2. 从SD卡的FAT分区上加载文件到SDRAM
3. 将环境变量保存至SD卡
4. 添加DM9000网卡驱动,开启网络功能(例如:tftp,nfs等)
5. 添加TAB键命令自动补全功能
+6.修复bug:
修复bug 1:SD卡保存环境变量出现Writing to MMC(0)... mmc_send_cmd: error during transfer: 0x00208001 mmc write failed。
修复bug 2:每次启动只能保存一次环境变量。
ver2.1代码改动量非常小,一步就可完成,但是由于经验不足,我在bug的定位上花了很多时间.
具体修改如下:
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- tiny210_config
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- all spl
由于我的系统下装有两套交叉工具链,所以没有把 /opt/FriendlyARM/toolschain/4.5.1/bin/ 添加到环境变量,在使用工具链时要指明路径。
将SD卡通过读卡器接上电脑(或直接插入笔记本卡槽),通过"cat /proc/partitions"找出SD卡对应的设备,我的设备节点是/dev/sdb.
执行下面的命令
$sudo dd iflag=dsync oflag=dsync if=spl/tiny210-spl.bin of=/dev/sdb seek=1
$sudo dd iflag=dsync oflag=dsync if=u-boot.bin of=/dev/sdb seek=49
测试saveenv:
PS : 简单记录解决过程
错误的打印出处的确不难找,printf("%s: error during transfer: 0x%08x\n", __func__, mask);即是.可是仔细看看被屏蔽部分代码是没什么问题的,
if (mask & (1 << 15)) {
前三个版本都不支持nandflash的读写,这次更新(ver2.2)添加了nandflash驱动及yaffs文件系统的烧写功能。在kasim的建议下我从ver2.2开始用git源代码仓库管理我的源码。并发布上一版本的补丁文件。
你可以点击下面的链接浏览u-boot for tiny210 ver2.2 源码:
Git source u-boot for tiny210 ver2.2
下面的提供了在CSDN资源库的下载链接:
ver2.2源码下载: u-boot for tiny210 ver2.2
下面的提供了补丁包的下载链接:
ver2.2补丁下载: u-boot-for-tiny210-patch-ver2.2
下面的链接提供了前几次修改的源码:
ver1.0源码下载:u-boot for tiny210 ver1.0
ver2.0源码下载:u-boot for tiny210 ver2.0
ver2.1源码下载:u-boot for tiny210 ver2.1
你还可以参考下三篇blog从头构建自己的u-boot for tiny210
ver1.0 ver2.0 ver2.1
ver2.2的基本功能:
1. SD boot,基于linaro u-boot的SPL功能实现
2. 从SD卡的FAT分区上加载文件到SDRAM
3. 将环境变量保存至SD卡
4. 添加DM9000网卡驱动,开启网络功能(例如:tftp,nfs等)
5. 添加TAB键命令自动补全功能
6.修复bug:
修复bug 1:SD卡保存环境变量出现Writing to MMC(0)... mmc_send_cmd: error during transfer: 0x00208001 mmc write failed。
修复bug 2:每次启动只能保存一次环境变量。
+7.添加NandFlash驱动,开启所有Nand cmd。
+8.添加Yaffs文件系统烧写支持。
参照本文后面内容修改完后:
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- tiny210_config
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- all spl
由于我的系统下装有两套交叉工具链,所以没有把 /opt/FriendlyARM/toolschain/4.5.1/bin/ 添加到环境变量,在使用工具链时要指明路径。
将SD卡通过读卡器接上电脑(或直接插入笔记本卡槽),通过"cat /proc/partitions"找出SD卡对应的设备,我的设备节点是/dev/sdb.
执行下面的命令
$sudo dd iflag=dsync oflag=dsync if=spl/tiny210-spl.bin of=/dev/sdb seek=1
$sudo dd iflag=dsync oflag=dsync if=u-boot.bin of=/dev/sdb seek=49
启动:
部分NAND CMD测试:
下面简要介绍ver2.2的修改步骤:
左边的数字为旧行号,右边的数字为新行号,大家可以对应行号阅读修改部分的源码,或自己从ver2.1修改至ver2.2
1.tiny210-u-boot-version2.1/board/samsung/tiny210/Makefile 在此目录下修改Makefile
31 | 31 | ||
32 | 32 | ifdef CONFIG_SPL_BUILD | |
33 | 33 | COBJS += mmc_boot.o | |
34 | #COBJS += nand.o | ||
35 | #COBJS += nand_cp.o | ||
34 | 36 | endif | |
37 | COBJS += nand.o | ||
38 | COBJS += nand_cp.o | ||
35 | 39 | ||
36 | 40 | SOBJS := lowlevel_init.o mem_setup.o | |
37 | 41 |
17 | int add_mtd_device(struct mtd_info *mtd) |
64 | 64 | * Add MTD device so that we can reference it later | |
65 | 65 | * via the mtdcore infrastructure (e.g. ubi). | |
66 | 66 | */ | |
67 | sprintf(dev_name[i], "nand%d", i); | ||
67 | #if CONFIG_NAND_NO_USE_CHIP_NAME | ||
68 | sprintf(dev_name[i], "nand%d", i); | ||
68 | 69 | mtd->name = dev_name[i++]; | |
70 | #endif | ||
69 | 71 | add_mtd_device(mtd); | |
72 | |||
70 | 73 | #endif | |
71 | 74 | } else | |
72 | 75 | mtd->name = NULL; |
430 | 430 | #define CONFIG_CMDLINE_EDITING | |
431 | 431 | #define CONFIG_AUTO_COMPLETE | |
432 | 432 | #define CONFIG_SYS_HUSH_PARSER | |
433 | |||
434 | /*****************************Modified by lk for nand driver*************/ | ||
435 | #define CONFIG_CMD_NAND | ||
436 | #if defined(CONFIG_CMD_NAND) | ||
437 | #define CONFIG_CMD_NAND_YAFFS | ||
438 | #define CONFIG_CMD_MTDPARTS | ||
439 | #define CONFIG_SYS_MAX_NAND_DEVICE 1 | ||
440 | #define CONFIG_SYS_NAND_BASE (0xB0E000000) | ||
441 | #define NAND_MAX_CHIPS 1 | ||
442 | |||
443 | #define CONFIG_MTD_DEVICE /* needed for mtdparts commands add by lkmcu */ | ||
444 | |||
445 | #define NAND_DISABLE_CE() (NFCONT_REG |= (1 << 1)) | ||
446 | #define NAND_ENABLE_CE() (NFCONT_REG &= ~(1 << 1)) | ||
447 | #define NF_TRANSRnB() do { while(!(NFSTAT_REG & (1 << 0))); } while(0) | ||
448 | #define CONFIG_CMD_NAND_YAFFS_SKIPFB | ||
449 | |||
450 | #define CONFIG_NAND_USE_CHIP_NAME 1 | ||
451 | |||
452 | #if 0 | ||
453 | |||
454 | #define CONFIG_MTD_DEBUG | ||
455 | #define CONFIG_MTD_DEBUG_VERBOSE | ||
456 | |||
457 | #define CFG_NAND_SKIP_BAD_DOT_I 1 | ||
458 | #define CFG_NAND_HWECC | ||
459 | |||
460 | #define CONFIG_NAND_BL1_8BIT_ECC | ||
461 | #endif | ||
462 | #undef CFG_NAND_FLASH_BBT | ||
463 | #endif | ||
464 | |||
465 | |||
433 | 466 | #endif /* __CONFIG_H */ |
126 | 126 | uint32_t eccpos[128]; | |
127 | 127 | uint32_t oobavail; | |
128 | 128 | struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES]; | |
129 | uint32_t useecc; | ||
130 | uint32_t reserved; | ||
129 | 131 | }; | |
130 | 132 | ||
131 | 133 | /** |
- #include
- #if defined(CONFIG_CMD_NAND)
- #include
- #include
- #include
- #include
- #include
- /* Nand flash definition values by jsgood */
- #define S3C_NAND_TYPE_UNKNOWN 0x0
- #define S3C_NAND_TYPE_SLC 0x1
- #define S3C_NAND_TYPE_MLC 0x2
- #undef S3C_NAND_DEBUG
- /* Nand flash global values by jsgood */
- int cur_ecc_mode = 0;
- int nand_type = S3C_NAND_TYPE_UNKNOWN;
- /* Nand flash oob definition for SLC 512b page size by jsgood */
- static struct nand_ecclayout s3c_nand_oob_16 = {
- .useecc = MTD_NANDECC_AUTOPLACE, /* Only for U-Boot */
- .eccbytes = 4,
- .eccpos = {1, 2, 3, 4},
- .oobfree = {
- {.offset = 6,
- . length = 10}}
- };
- /* Nand flash oob definition for SLC 2k page size by jsgood */
- static struct nand_ecclayout s3c_nand_oob_64 = {
- .useecc = MTD_NANDECC_AUTOPLACE, /* Only for U-Boot */
- .eccbytes = 16,
- .eccpos = {40, 41, 42, 43, 44, 45, 46, 47,
- 48, 49, 50, 51, 52, 53, 54, 55},
- .oobfree = {
- {.offset = 2,
- .length = 38}}
- };
- /* Nand flash oob definition for MLC 2k page size by jsgood */
- static struct nand_ecclayout s3c_nand_oob_mlc_64 = {
- .useecc = MTD_NANDECC_AUTOPLACE, /* Only for U-Boot */
- .eccbytes = 32,
- .eccpos = {
- 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47,
- 48, 49, 50, 51, 52, 53, 54, 55,
- 56, 57, 58, 59, 60, 61, 62, 63},
- .oobfree = {
- {.offset = 2,
- .length = 28}}
- };
- /* Nand flash oob definition for 4Kb page size with 8_bit ECC */
- static struct nand_ecclayout s3c_nand_oob_128 = {
- .useecc = MTD_NANDECC_AUTOPLACE,
- .eccbytes = 104,
- .eccpos = {
- 24, 25, 26, 27, 28, 29, 30, 31,
- 32, 33, 34, 35, 36, 37, 38, 39,
- 40, 41, 42, 43, 44, 45, 46, 47,
- 48, 49, 50, 51, 52, 53, 54, 55,
- 56, 57, 58, 59, 60, 61, 62, 63,
- 64, 65, 66, 67, 68, 69, 70, 71,
- 72, 73, 74, 75, 76, 77, 78, 79,
- 80, 81, 82, 83, 84, 85, 86, 87,
- 88, 89, 90, 91, 92, 93, 94, 95,
- 96, 97, 98, 99, 100, 101, 102, 103,
- 104, 105, 106, 107, 108, 109, 110, 111,
- 112, 113, 114, 115, 116, 117, 118, 119,
- 120, 121, 122, 123, 124, 125, 126, 127},
- .oobfree = {
- {.offset = 2,
- .length = 22}}
- };
- #if defined(S3C_NAND_DEBUG)
- /*
- * Function to print out oob buffer for debugging
- * Written by jsgood
- */
- static void print_oob(const char *header, struct mtd_info *mtd)
- {
- int i;
- struct nand_chip *chip = mtd->priv;
- printk("%s:\t", header);
- for(i = 0; i < 64; i++)
- printk("%02x ", chip->oob_poi[i]);
- printk("\n");
- }
- #endif
- /*
- * Hardware specific access to control-lines function
- * Written by jsgood
- */
- static void s3c_nand_hwcontrol(struct mtd_info *mtd, int dat, unsigned int ctrl)
- {
- unsigned int cur;
- #if 1
- if (ctrl & NAND_CTRL_CHANGE) {
- if (ctrl & NAND_NCE) {
- if (dat != NAND_CMD_NONE) {
- cur = readl(NFCONT);
- /* Forced Enable CS */
- cur &= ~NFCONT_CS;
- writel(cur, NFCONT);
- }
- } else {
- cur = readl(NFCONT);
- /* Forced Enable CS */
- cur |= NFCONT_CS;
- writel(cur, NFCONT);
- }
- }
- if (dat != NAND_CMD_NONE) {
- if (ctrl & NAND_CLE)
- writeb(dat, NFCMMD);
- else if (ctrl & NAND_ALE)
- writeb(dat, NFADDR);
- }
- #endif
- }
- /*
- * Function for checking device ready pin
- * Written by jsgood
- */
- static int s3c_nand_device_ready(struct mtd_info *mtdinfo)
- {
- while (!(readl(NFSTAT) & NFSTAT_RnB)) {}
- return 1;
- }
- /*
- * We don't use bad block table
- */
- static int s3c_nand_scan_bbt(struct mtd_info *mtdinfo)
- {
- return nand_default_bbt(mtdinfo);
- }
- #if defined(CFG_NAND_HWECC)
- /*
- * Function for checking ECCEncDone in NFSTAT
- * Written by jsgood
- */
- static void s3c_nand_wait_enc(void)
- {
- while (!(readl(NFECCSTAT) & NFSTAT_ECCENCDONE)) {}
- }
- /*
- * Function for checking ECCDecDone in NFSTAT
- * Written by jsgood
- */
- static void s3c_nand_wait_dec(void)
- {
- while (!(readl(NFECCSTAT) & NFSTAT_ECCDECDONE)) {}
- }
- /*
- * Function for checking ECC Busy
- * Written by jsgood
- */
- static void s3c_nand_wait_ecc_busy(void)
- {
- while (readl(NFECCSTAT) & NFESTAT0_ECCBUSY) {}
- }
- /*
- * This function is called before encoding ecc codes to ready ecc engine.
- * Written by jsgood
- */
- static void s3c_nand_enable_hwecc(struct mtd_info *mtd, int mode)
- {
- u_long nfcont, nfconf;
- cur_ecc_mode = mode;
- nfconf = readl(NFCONF);
- if (nand_type == S3C_NAND_TYPE_SLC)
- nfconf &= ~NFCONF_ECC_MLC; /* SLC */
- else
- nfconf |= NFCONF_ECC_MLC; /* MLC */
- writel(nfconf, NFCONF);
- printf("NFCONF = %x\n",nfconf);
- /* Initialize & unlock */
- nfcont = readl(NFCONT);
- nfcont |= NFCONT_INITMECC;
- nfcont &= ~NFCONT_MECCLOCK;
- if (nand_type == S3C_NAND_TYPE_MLC) {
- if (mode == NAND_ECC_WRITE)
- nfcont |= NFCONT_ECC_ENC;
- else if (mode == NAND_ECC_READ)
- nfcont &= ~NFCONT_ECC_ENC;
- }
- writel(nfcont, NFCONT);
- }
- /*
- * This function is called immediately after encoding ecc codes.
- * This function returns encoded ecc codes.
- * Written by jsgood
- */
- static int s3c_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
- {
- u_long nfcont, nfmecc0, nfmecc1;
- /* Lock */
- nfcont = readl(NFCONT);
- nfcont |= NFCONT_MECCLOCK;
- writel(nfcont, NFCONT);
- if (nand_type == S3C_NAND_TYPE_SLC) {
- nfmecc0 = readl(NFMECC0);
- ecc_code[0] = nfmecc0 & 0xff;
- ecc_code[1] = (nfmecc0 >> 8) & 0xff;
- ecc_code[2] = (nfmecc0 >> 16) & 0xff;
- ecc_code[3] = (nfmecc0 >> 24) & 0xff;
- } else {
- if (cur_ecc_mode == NAND_ECC_READ)
- s3c_nand_wait_dec();
- else {
- s3c_nand_wait_enc();
- nfmecc0 = readl(NFMECC0);
- nfmecc1 = readl(NFMECC1);
- ecc_code[0] = nfmecc0 & 0xff;
- ecc_code[1] = (nfmecc0 >> 8) & 0xff;
- ecc_code[2] = (nfmecc0 >> 16) & 0xff;
- ecc_code[3] = (nfmecc0 >> 24) & 0xff;
- ecc_code[4] = nfmecc1 & 0xff;
- ecc_code[5] = (nfmecc1 >> 8) & 0xff;
- ecc_code[6] = (nfmecc1 >> 16) & 0xff;
- ecc_code[7] = (nfmecc1 >> 24) & 0xff;
- }
- }
- return 0;
- }
- /*
- * This function determines whether read data is good or not.
- * If SLC, must write ecc codes to controller before reading status bit.
- * If MLC, status bit is already set, so only reading is needed.
- * If status bit is good, return 0.
- * If correctable errors occured, do that.
- * If uncorrectable errors occured, return -1.
- * Written by jsgood
- */
- static int s3c_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
- {
- int ret = -1;
- u_long nfestat0, nfestat1, nfmeccdata0, nfmeccdata1, nfmlcbitpt;
- u_char err_type;
- if (nand_type == S3C_NAND_TYPE_SLC) {
- /* SLC: Write ecc to compare */
- nfmeccdata0 = (read_ecc[1] << 16) | read_ecc[0];
- nfmeccdata1 = (read_ecc[3] << 16) | read_ecc[2];
- writel(nfmeccdata0, NFMECCDATA0);
- writel(nfmeccdata1, NFMECCDATA1);
- /* Read ecc status */
- nfestat0 = readl(NFESTAT0);
- err_type = nfestat0 & 0x3;
- switch (err_type) {
- case 0: /* No error */
- ret = 0;
- break;
- case 1: /* 1 bit error (Correctable)
- (nfestat0 >> 7) & 0x7ff :error byte number
- (nfestat0 >> 4) & 0x7 :error bit number */
- printk("s3c-nand: 1 bit error detected at byte %ld, correcting from "
- "0x%02x ", (nfestat0 >> 7) & 0x7ff, dat[(nfestat0 >> 7) & 0x7ff]);
- dat[(nfestat0 >> 7) & 0x7ff] ^= (1 << ((nfestat0 >> 4) & 0x7));
- printk("to 0x%02x...OK\n", dat[(nfestat0 >> 7) & 0x7ff]);
- ret = 1;
- break;
- case 2: /* Multiple error */
- case 3: /* ECC area error */
- printk("s3c-nand: ECC uncorrectable error detected\n");
- ret = -1;
- break;
- }
- } else {
- /* MLC: */
- s3c_nand_wait_ecc_busy();
- nfestat0 = readl(NFESTAT0);
- nfestat1 = readl(NFESTAT1);
- nfmlcbitpt = readl(NFMLCBITPT);
- err_type = (nfestat0 >> 26) & 0x7;
- /* No error, If free page (all 0xff) */
- if ((nfestat0 >> 29) & 0x1) {
- err_type = 0;
- } else {
- /* No error, If all 0xff from 17th byte in oob (in case of JFFS2 format) */
- if (dat) {
- if (dat[17] == 0xff && dat[26] == 0xff && dat[35] == 0xff && dat[44] == 0xff && dat[54] == 0xff)
- err_type = 0;
- }
- }
- switch (err_type) {
- case 5: /* Uncorrectable */
- printk("s3c-nand: ECC uncorrectable error detected\n");
- ret = -1;
- break;
- case 4: /* 4 bit error (Correctable) */
- dat[(nfestat1 >> 16) & 0x3ff] ^= ((nfmlcbitpt >> 24) & 0xff);
- case 3: /* 3 bit error (Correctable) */
- dat[nfestat1 & 0x3ff] ^= ((nfmlcbitpt >> 16) & 0xff);
- case 2: /* 2 bit error (Correctable) */
- dat[(nfestat0 >> 16) & 0x3ff] ^= ((nfmlcbitpt >> 8) & 0xff);
- case 1: /* 1 bit error (Correctable) */
- printk("s3c-nand: %d bit(s) error detected, corrected successfully\n", err_type);
- dat[nfestat0 & 0x3ff] ^= (nfmlcbitpt & 0xff);
- ret = err_type;
- break;
- case 0: /* No error */
- ret = 0;
- break;
- }
- }
- return ret;
- }
- #if defined(CONFIG_NAND_BL1_8BIT_ECC) && defined(CONFIG_S5PC110)
- /***************************************************************
- * jsgood: Temporary 8 Bit H/W ECC supports for BL1 (6410/6430 only)
- ***************************************************************/
- static void s3c_nand_wait_ecc_busy_8bit(void)
- {
- while (readl(NFECCSTAT) & NFESTAT0_ECCBUSY) {
- }
- }
- void s3c_nand_enable_hwecc_8bit(struct mtd_info *mtd, int mode)
- {
- u_long nfreg;
- cur_ecc_mode = mode;
- if(cur_ecc_mode == NAND_ECC_WRITE){
- /* 8 bit selection */
- nfreg = readl(NFCONF);
- nfreg &= ~(0x3 << 23);
- nfreg |= (0x3<< 23);
- writel(nfreg, NFCONF);
- /* Set ECC type */
- nfreg = readl(NFECCCONF);
- nfreg &= 0xf;
- nfreg |= 0x3;
- writel(nfreg, NFECCCONF);
- /* set 8/12/16bit Ecc direction to Encoding */
- nfreg = readl(NFECCCONT);
- nfreg &= ~(0x1 << 16);
- nfreg |= (0x1 << 16);
- writel(nfreg, NFECCCONT);
- /* set 8/12/16bit ECC message length to msg */
- nfreg = readl(NFECCCONF);
- nfreg &= ~((0x3ff<<16));
- nfreg |= (0x1ff << 16);
- writel(nfreg, NFECCCONF);
- /* write '1' to clear this bit. */
- /* clear illegal access status bit */
- nfreg = readl(NFSTAT);
- nfreg |= (0x1 << 4);
- nfreg |= (0x1 << 5);
- writel(nfreg, NFSTAT);
- /* clear 8/12/16bit ecc encode done */
- nfreg = readl(NFECCSTAT);
- nfreg |= (0x1 << 25);
- writel(nfreg, NFECCSTAT);
- nfreg = readl(NFCONT);
- nfreg &= ~(0x1 << 1);
- writel(nfreg, NFCONT);
- /* Initialize & unlock */
- nfreg = readl(NFCONT);
- nfreg &= ~NFCONT_MECCLOCK;
- nfreg |= NFCONT_INITECC;
- writel(nfreg, NFCONT);
- /* Reset ECC value. */
- nfreg = readl(NFECCCONT);
- nfreg |= (0x1 << 2);
- writel(nfreg, NFECCCONT);
- }else{
- /* set 8/12/16bit ECC message length to msg */
- nfreg = readl(NFECCCONF);
- nfreg &= ~((0x3ff<<16));
- nfreg |= (0x1ff << 16);
- writel(nfreg, NFECCCONF);
- /* set 8/12/16bit Ecc direction to Decoding */
- nfreg = readl(NFECCCONT);
- nfreg &= ~(0x1 << 16);
- writel(nfreg, NFECCCONT);
- /* write '1' to clear this bit. */
- /* clear illegal access status bit */
- nfreg = readl(NFSTAT);
- nfreg |= (0x1 << 4);
- nfreg |= (0x1 << 5);
- writel(nfreg, NFSTAT);
- /* Lock */
- nfreg = readl(NFCONT);
- nfreg |= NFCONT_MECCLOCK;
- writel(nfreg, NFCONT);
- nfreg = readl(NFCONT);
- nfreg &= ~(0x1 << 1);
- writel(nfreg, NFCONT);
- /* clear 8/12/16bit ecc decode done */
- nfreg = readl(NFECCSTAT);
- nfreg |= (0x1 << 24);
- writel(nfreg, NFECCSTAT);
- /* Initialize & lock */
- nfreg = readl(NFCONT);
- nfreg &= ~NFCONT_MECCLOCK;
- nfreg |= NFCONT_MECCLOCK;
- writel(nfreg, NFCONT);
- /* write '1' to clear this bit. */
- nfreg = readl(NFSTAT);
- nfreg &= ~(1<<4);
- nfreg |= (1<<4);
- writel(nfreg, NFSTAT);
- while(!(nfreg &(1<<4))){
- nfreg = readl(NFSTAT);
- }
- /* write '1' to clear this bit. */
- nfreg = readl(NFSTAT);
- nfreg &= ~(1<<4);
- nfreg |= (1<<4);
- writel(nfreg, NFSTAT);
- /* Initialize & unlock */
- nfreg = readl(NFCONT);
- nfreg &= ~NFCONT_MECCLOCK;
- nfreg |= NFCONT_INITECC;
- writel(nfreg, NFCONT);
- /* Reset ECC value. */
- nfreg = readl(NFECCCONT);
- nfreg |= (0x1 << 2);
- writel(nfreg, NFECCCONT);
- }
- }
- int s3c_nand_calculate_ecc_8bit(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
- {
- u_long nfcont, nfeccprgecc0, nfeccprgecc1, nfeccprgecc2, nfeccprgecc3;
- if (cur_ecc_mode == NAND_ECC_READ) {
- /* Lock */
- nfcont = readl(NFCONT);
- nfcont |= NFCONT_MECCLOCK;
- writel(nfcont, NFCONT);
- s3c_nand_wait_dec();
- /* clear 8/12/16bit ecc decode done */
- nfcont = readl(NFECCSTAT);
- nfcont |= (1<<24);
- writel(nfcont, NFECCSTAT);
- s3c_nand_wait_ecc_busy_8bit();
- if(readl(NFSTAT)&(1<<5))
- {
- /* clear illegal access status bit */
- nfcont = readl(NFSTAT);
- nfcont |= (1<<5);
- writel(nfcont, NFSTAT);
- printf("\n Accessed locked area!! \n");
- nfcont = readl(NFCONT);
- nfcont |= (1<<1);
- writel(nfcont, NFCONT);
- return -1;
- }
- nfcont = readl(NFCONT);
- nfcont |= (1<<1);
- writel(nfcont, NFCONT);
- } else {
- /* Lock */
- nfcont = readl(NFCONT);
- nfcont |= NFCONT_MECCLOCK;
- writel(nfcont, NFCONT);
- s3c_nand_wait_enc();
- /* clear 8/12/16bit ecc encode done */
- nfcont = readl(NFECCSTAT);
- nfcont |= (1<<25);
- writel(nfcont, NFECCSTAT);
- nfeccprgecc0 = readl(NFECCPRGECC0);
- nfeccprgecc1 = readl(NFECCPRGECC1);
- nfeccprgecc2 = readl(NFECCPRGECC2);
- nfeccprgecc3 = readl(NFECCPRGECC3);
- ecc_code[0] = nfeccprgecc0 & 0xff;
- ecc_code[1] = (nfeccprgecc0 >> 8) & 0xff;
- ecc_code[2] = (nfeccprgecc0 >> 16) & 0xff;
- ecc_code[3] = (nfeccprgecc0 >> 24) & 0xff;
- ecc_code[4] = nfeccprgecc1 & 0xff;
- ecc_code[5] = (nfeccprgecc1 >> 8) & 0xff;
- ecc_code[6] = (nfeccprgecc1 >> 16) & 0xff;
- ecc_code[7] = (nfeccprgecc1 >> 24) & 0xff;
- ecc_code[8] = nfeccprgecc2 & 0xff;
- ecc_code[9] = (nfeccprgecc2 >> 8) & 0xff;
- ecc_code[10] = (nfeccprgecc2 >> 16) & 0xff;
- ecc_code[11] = (nfeccprgecc2 >> 24) & 0xff;
- ecc_code[12] = nfeccprgecc3 & 0xff;
- }
- return 0;
- }
- int s3c_nand_correct_data_8bit(struct mtd_info *mtd, u_char *dat)
- {
- int ret = -1;
- u_long nf8eccerr0, nf8eccerr1, nf8eccerr2, nf8eccerr3, nf8eccerr4, nfmlc8bitpt0, nfmlc8bitpt1;
- u_char err_type;
- s3c_nand_wait_ecc_busy_8bit();
- nf8eccerr0 = readl(NFECCSECSTAT);
- nf8eccerr1 = readl(NFECCERL0);
- nf8eccerr2 = readl(NFECCERL1);
- nf8eccerr3 = readl(NFECCERL2);
- nf8eccerr4 = readl(NFECCERL3);
- nfmlc8bitpt0 = readl(NFECCERP0);
- nfmlc8bitpt1 = readl(NFECCERP1);
- err_type = (nf8eccerr0) & 0xf;
- /* No error, If free page (all 0xff) */
- if ((nf8eccerr0 >> 29) & 0x1)
- err_type = 0;
- switch (err_type) {
- case 9: /* Uncorrectable */
- printk("s3c-nand: ECC uncorrectable error detected\n");
- ret = -1;
- break;
- case 8: /* 8 bit error (Correctable) */
- dat[(nf8eccerr4 >> 16) & 0x3ff] ^= ((nfmlc8bitpt1 >> 24) & 0xff);
- case 7: /* 7 bit error (Correctable) */
- dat[(nf8eccerr4) & 0x3ff] ^= ((nfmlc8bitpt1 >> 16) & 0xff);
- case 6: /* 6 bit error (Correctable) */
- dat[(nf8eccerr3 >> 16) & 0x3ff] ^= ((nfmlc8bitpt1 >> 8) & 0xff);
- case 5: /* 5 bit error (Correctable) */
- dat[(nf8eccerr3) & 0x3ff] ^= ((nfmlc8bitpt1) & 0xff);
- case 4: /* 8 bit error (Correctable) */
- dat[(nf8eccerr2 >> 16) & 0x3ff] ^= ((nfmlc8bitpt0 >> 24) & 0xff);
- case 3: /* 7 bit error (Correctable) */
- dat[(nf8eccerr2) & 0x3ff] ^= ((nfmlc8bitpt0>> 16) & 0xff);
- case 2: /* 6 bit error (Correctable) */
- dat[(nf8eccerr1 >> 16) & 0x3ff] ^= ((nfmlc8bitpt0>> 8) & 0xff);
- case 1: /* 1 bit error (Correctable) */
- printk("s3c-nand: %d bit(s) error detected, corrected successfully\n", err_type);
- dat[(nf8eccerr1) & 0x3ff] ^= ((nfmlc8bitpt0) & 0xff);
- ret = err_type;
- break;
- case 0: /* No error */
- ret = 0;
- break;
- }
- return ret;
- }
- void s3c_nand_write_page_8bit(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf)
- {
- u_long nfreg;
- int i, eccsize = 512;
- int eccbytes = 13;
- int eccsteps = mtd->writesize / eccsize;
- int badoffs = mtd->writesize == 512 ? NAND_SMALL_BADBLOCK_POS : NAND_LARGE_BADBLOCK_POS;
- uint8_t *ecc_calc = chip->buffers->ecccalc;
- uint8_t *p = buf;
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- s3c_nand_enable_hwecc_8bit(mtd, NAND_ECC_WRITE);
- chip->write_buf(mtd, p, eccsize);
- s3c_nand_calculate_ecc_8bit(mtd, p, &ecc_calc[i]);
- }
- chip->oob_poi[badoffs] = 0xff;
- for (i = 0; i <= eccbytes * (mtd->writesize / eccsize); i++) {
- #if defined(CONFIG_EVT1)
- chip->oob_poi[i+12] = ecc_calc[i];
- #else
- chip->oob_poi[i] = ecc_calc[i];
- #endif
- }
- chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
- }
- int s3c_nand_read_page_8bit(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf)
- {
- u_long nfreg;
- int i, stat, eccsize = 512;
- int eccbytes = 13;
- int eccsteps = mtd->writesize / eccsize;
- int col = 0;
- uint8_t *p = buf;
- /* Step1: read whole oob */
- col = mtd->writesize;
- #if defined(CONFIG_EVT1)
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col+12, -1);
- #else
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
- #endif
- chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
- col = 0;
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
- s3c_nand_enable_hwecc_8bit(mtd, NAND_ECC_READ);
- chip->read_buf(mtd, p, eccsize);
- chip->write_buf(mtd, chip->oob_poi + (((mtd->writesize / eccsize) - eccsteps) * eccbytes), eccbytes);
- s3c_nand_calculate_ecc_8bit(mtd, 0, 0);
- stat = s3c_nand_correct_data_8bit(mtd, p);
- if (stat == -1)
- mtd->ecc_stats.failed++;
- col = eccsize * ((mtd->writesize / eccsize) + 1 - eccsteps);
- }
- return 0;
- }
- int s3c_nand_read_oob_8bit(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd)
- {
- int eccbytes = chip->ecc.bytes;
- int secc_start = mtd->oobsize - eccbytes;
- if (sndcmd) {
- chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
- sndcmd = 0;
- }
- chip->read_buf(mtd, chip->oob_poi, 0); //secc_start);
- return sndcmd;
- }
- int s3c_nand_write_oob_8bit(struct mtd_info *mtd, struct nand_chip *chip, int page)
- {
- int status = 0;
- int eccbytes = chip->ecc.bytes;
- int secc_start = mtd->oobsize - eccbytes;
- chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
- /* spare area */
- chip->write_buf(mtd, chip->oob_poi, 0); //secc_start);
- /* Send command to program the OOB data */
- chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- status = chip->waitfunc(mtd, chip);
- return status & NAND_STATUS_FAIL ? -EIO : 0;
- }
- /********************************************************/
- #endif
- static int s3c_nand_write_oob_1bit(struct mtd_info *mtd, struct nand_chip *chip,
- int page)
- {
- uint8_t *ecc_calc = chip->buffers->ecccalc;
- int status = 0;
- int eccbytes = chip->ecc.bytes;
- int secc_start = mtd->oobsize - eccbytes;
- int i;
- chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
- /* spare area */
- chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
- chip->write_buf(mtd, chip->oob_poi, secc_start);
- chip->ecc.calculate(mtd, 0, &ecc_calc[chip->ecc.total]);
- for (i = 0; i < eccbytes; i++)
- chip->oob_poi[secc_start + i] = ecc_calc[chip->ecc.total + i];
- chip->write_buf(mtd, chip->oob_poi + secc_start, eccbytes);
- /* Send command to program the OOB data */
- chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- status = chip->waitfunc(mtd, chip);
- return status & NAND_STATUS_FAIL ? -EIO : 0;
- }
- static int s3c_nand_read_oob_1bit(struct mtd_info *mtd, struct nand_chip *chip,
- int page, int sndcmd)
- {
- uint8_t *ecc_calc = chip->buffers->ecccalc;
- int eccbytes = chip->ecc.bytes;
- int secc_start = mtd->oobsize - eccbytes;
- if (sndcmd) {
- chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
- sndcmd = 0;
- }
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
- chip->read_buf(mtd, chip->oob_poi, secc_start);
- chip->ecc.calculate(mtd, 0, &ecc_calc[chip->ecc.total]);
- chip->read_buf(mtd, chip->oob_poi + secc_start, eccbytes);
- /* jffs2 special case */
- if (!(chip->oob_poi[2] == 0x85 && chip->oob_poi[3] == 0x19))
- chip->ecc.correct(mtd, chip->oob_poi, chip->oob_poi + secc_start, 0);
- return sndcmd;
- }
- static void s3c_nand_write_page_1bit(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf)
- {
- int i, eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- int secc_start = mtd->oobsize - eccbytes;
- uint8_t *ecc_calc = chip->buffers->ecccalc;
- const uint8_t *p = buf;
- uint32_t *eccpos = chip->ecc.layout->eccpos;
- /* main area */
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
- chip->write_buf(mtd, p, eccsize);
- chip->ecc.calculate(mtd, p, &ecc_calc[i]);
- }
- for (i = 0; i < chip->ecc.total; i++)
- chip->oob_poi[eccpos[i]] = ecc_calc[i];
- /* spare area */
- chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
- chip->write_buf(mtd, chip->oob_poi, secc_start);
- chip->ecc.calculate(mtd, p, &ecc_calc[chip->ecc.total]);
- for (i = 0; i < eccbytes; i++)
- chip->oob_poi[secc_start + i] = ecc_calc[chip->ecc.total + i];
- chip->write_buf(mtd, chip->oob_poi + secc_start, eccbytes);
- }
- static int s3c_nand_read_page_1bit(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf)
- {
- int i, stat, eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- int secc_start = mtd->oobsize - eccbytes;
- int col = 0;
- uint8_t *p = buf;
- uint32_t *mecc_pos = chip->ecc.layout->eccpos;
- uint8_t *ecc_calc = chip->buffers->ecccalc;
- col = mtd->writesize;
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
- /* spare area */
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
- chip->read_buf(mtd, chip->oob_poi, secc_start);
- chip->ecc.calculate(mtd, p, &ecc_calc[chip->ecc.total]);
- chip->read_buf(mtd, chip->oob_poi + secc_start, eccbytes);
- /* jffs2 special case */
- if (!(chip->oob_poi[2] == 0x85 && chip->oob_poi[3] == 0x19))
- chip->ecc.correct(mtd, chip->oob_poi, chip->oob_poi + secc_start, 0);
- col = 0;
- /* main area */
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
- chip->read_buf(mtd, p, eccsize);
- chip->ecc.calculate(mtd, p, &ecc_calc[i]);
- stat = chip->ecc.correct(mtd, p, chip->oob_poi + mecc_pos[0] + ((chip->ecc.steps - eccsteps) * eccbytes), 0);
- if (stat == -1)
- mtd->ecc_stats.failed++;
- col = eccsize * (chip->ecc.steps + 1 - eccsteps);
- }
- return 0;
- }
- /*
- * Hardware specific page read function for MLC.
- * Written by jsgood
- */
- static int s3c_nand_read_page_4bit(struct mtd_info *mtd, struct nand_chip *chip,
- uint8_t *buf)
- {
- int i, stat, eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- int col = 0;
- uint8_t *p = buf;
- uint32_t *mecc_pos = chip->ecc.layout->eccpos;
- /* Step1: read whole oob */
- col = mtd->writesize;
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
- chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
- col = 0;
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- chip->cmdfunc(mtd, NAND_CMD_RNDOUT, col, -1);
- chip->ecc.hwctl(mtd, NAND_ECC_READ);
- chip->read_buf(mtd, p, eccsize);
- chip->write_buf(mtd, chip->oob_poi + mecc_pos[0] + ((chip->ecc.steps - eccsteps) * eccbytes), eccbytes);
- chip->ecc.calculate(mtd, 0, 0);
- stat = chip->ecc.correct(mtd, p, 0, 0);
- if (stat == -1)
- mtd->ecc_stats.failed++;
- col = eccsize * (chip->ecc.steps + 1 - eccsteps);
- }
- return 0;
- }
- /*
- * Hardware specific page write function for MLC.
- * Written by jsgood
- */
- static void s3c_nand_write_page_4bit(struct mtd_info *mtd, struct nand_chip *chip,
- const uint8_t *buf)
- {
- int i, eccsize = chip->ecc.size;
- int eccbytes = chip->ecc.bytes;
- int eccsteps = chip->ecc.steps;
- const uint8_t *p = buf;
- uint8_t *ecc_calc = chip->buffers->ecccalc;
- uint32_t *mecc_pos = chip->ecc.layout->eccpos;
- /* Step1: write main data and encode mecc */
- for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
- chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
- chip->write_buf(mtd, p, eccsize);
- chip->ecc.calculate(mtd, p, &ecc_calc[i]);
- }
- /* Step2: save encoded mecc */
- for (i = 0; i < chip->ecc.total; i++)
- chip->oob_poi[mecc_pos[i]] = ecc_calc[i];
- chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
- }
- #endif
- /*
- * Board-specific NAND initialization. The following members of the
- * argument are board-specific (per include/linux/mtd/nand.h):
- * - IO_ADDR_R?: address to read the 8 I/O lines of the flash device
- * - IO_ADDR_W?: address to write the 8 I/O lines of the flash device
- * - hwcontrol: hardwarespecific function for accesing control-lines
- * - dev_ready: hardwarespecific function for accesing device ready/busy line
- * - enable_hwecc?: function to enable (reset) hardware ecc generator. Must
- * only be provided if a hardware ECC is available
- * - eccmode: mode of ecc, see defines
- * - chip_delay: chip dependent delay for transfering data from array to
- * read regs (tR)
- * - options: various chip options. They can partly be set to inform
- * nand_scan about special functionality. See the defines for further
- * explanation
- * Members with a "?" were not set in the merged testing-NAND branch,
- * so they are not set here either.
- */
- int board_nand_init(struct nand_chip *nand)
- { unsigned int cur;
- #if defined(CFG_NAND_HWECC)
- int i;
- u_char tmp;
- struct nand_flash_dev *type = NULL;
- #endif
- /*Modified by lk*/
- cur = MP01CON_REG;
- cur = (0x3<<12)|(0x3<<8)|(cur&(~(0xff<<8)));
- MP01CON_REG = cur;
- cur = MP03CON_REG;
- cur = (cur&(~(0xfff<<0)));
- cur = (cur&(~(0xf<<16)));
- cur |= (0x2<<16)|(0x2<<8)|(0x2<<4)|(0x2<<0);
- MP03CON_REG = cur;
- NFCONF_REG |= (7<<12)|(7<<8)|(7<<4)|(2<<23)|(1<<1);//NFCONF_VAL;
- NFCONT_REG |= (3<<4)|(1<<0);//NFCONT_VAL;
- NFCONT_REG &= ~((0x1<<16)|(0x1<<6)|(0x1<<7));
- /*Modified by lk*/
- nand->IO_ADDR_R = (void __iomem *)(NFDATA);
- nand->IO_ADDR_W = (void __iomem *)(NFDATA);
- nand->cmd_ctrl = s3c_nand_hwcontrol;
- nand->dev_ready = s3c_nand_device_ready;
- nand->scan_bbt = s3c_nand_scan_bbt;
- nand->options = 0;
- #if defined(CFG_NAND_FLASH_BBT)
- nand->options |= NAND_USE_FLASH_BBT;
- #else
- nand->options |= NAND_SKIP_BBTSCAN;
- #endif
- #if defined(CFG_NAND_HWECC)
- nand->ecc.mode = NAND_ECC_HW;
- nand->ecc.hwctl = s3c_nand_enable_hwecc;
- nand->ecc.calculate = s3c_nand_calculate_ecc;
- nand->ecc.correct = s3c_nand_correct_data;
- s3c_nand_hwcontrol(0, NAND_CMD_READID, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
- s3c_nand_hwcontrol(0, 0x00, NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE);
- s3c_nand_hwcontrol(0, 0x00, NAND_NCE | NAND_ALE);
- s3c_nand_hwcontrol(0, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
- s3c_nand_device_ready(0);
- tmp = readb(nand->IO_ADDR_R); /* Maf. ID */
- tmp = readb(nand->IO_ADDR_R); /* Device ID */
- for (i = 0; nand_flash_ids[i].name != NULL; i++) {
- if (tmp == nand_flash_ids[i].id) {
- type = &nand_flash_ids[i];
- break;
- }
- }
- printf("id = %x\n",nand_flash_ids[i].id);
- nand->cellinfo = readb(nand->IO_ADDR_R); /* 3rd byte */
- tmp = readb(nand->IO_ADDR_R); /* 4th byte */
- if (!type->pagesize) {
- if (((nand->cellinfo >> 2) & 0x3) == 0) {
- nand_type = S3C_NAND_TYPE_SLC;
- nand->ecc.size = 512;
- nand->ecc.bytes = 4;
- if ((1024 << (tmp & 0x3)) > 512) {
- nand->ecc.read_page = s3c_nand_read_page_1bit;
- nand->ecc.write_page = s3c_nand_write_page_1bit;
- nand->ecc.read_oob = s3c_nand_read_oob_1bit;
- nand->ecc.write_oob = s3c_nand_write_oob_1bit;
- nand->ecc.layout = &s3c_nand_oob_64;
- nand->ecc.hwctl = s3c_nand_enable_hwecc;
- nand->ecc.calculate = s3c_nand_calculate_ecc;
- nand->ecc.correct = s3c_nand_correct_data;
- nand->options |= NAND_NO_SUBPAGE_WRITE;
- } else {
- nand->ecc.layout = &s3c_nand_oob_16;
- }
- } else {
- nand_type = S3C_NAND_TYPE_MLC;
- nand->options |= NAND_NO_SUBPAGE_WRITE; /* NOP = 1 if MLC */
- nand->ecc.read_page = s3c_nand_read_page_4bit;
- nand->ecc.write_page = s3c_nand_write_page_4bit;
- nand->ecc.size = 512;
- nand->ecc.bytes = 8; /* really 7 bytes */
- nand->ecc.layout = &s3c_nand_oob_mlc_64;
- }
- } else {
- nand_type = S3C_NAND_TYPE_SLC;
- nand->ecc.size = 512;
- nand->cellinfo = 0;
- nand->ecc.bytes = 4;
- nand->ecc.layout = &s3c_nand_oob_16;
- }
- #else
- nand->ecc.mode = NAND_ECC_SOFT;
- #endif
- return 0;
- }
- #endif /* (CONFIG_CMD_NAND) */
- /*
- * $Id: nand_cp.c,v 1.1 2008/11/20 01:08:36 boyko Exp $
- *
- * (C) Copyright 2006 Samsung Electronics
- *
- * See file CREDITS for list of people who contributed to this
- * project.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation; either version 2 of
- * the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
- * MA 02111-1307 USA
- */
- /*
- * You must make sure that all functions in this file are designed
- * to load only U-Boot image.
- *
- * So, DO NOT USE in common read.
- *
- * By scsuh.
- */
- #include
- #ifdef CONFIG_S5PC11X
- #include
- #include
- #include
- #define NAND_CONTROL_ENABLE() (NFCONT_REG |= (1 << 0))
- /*
- * address format
- * 17 16 9 8 0
- * --------------------------------------------
- * | block(12bit) | page(5bit) | offset(9bit) |
- * --------------------------------------------
- */
- static int nandll_read_page (uchar *buf, ulong addr, int large_block)
- {
- int i;
- int page_size = 512;
- if (large_block)
- page_size = 2048;
- NAND_ENABLE_CE();
- NFCMD_REG = NAND_CMD_READ0;
- /* Write Address */
- NFADDR_REG = 0;
- if (large_block)
- NFADDR_REG = 0;
- NFADDR_REG = (addr) & 0xff;
- NFADDR_REG = (addr >> 8) & 0xff;
- NFADDR_REG = (addr >> 16) & 0xff;
- if (large_block)
- NFCMD_REG = NAND_CMD_READSTART;
- NF_TRANSRnB();
- /* for compatibility(2460). u32 cannot be used. by scsuh */
- for(i=0; i < page_size; i++) {
- *buf++ = NFDATA8_REG;
- }
- NAND_DISABLE_CE();
- return 0;
- }
- /*
- * Read data from NAND.
- */
- static int nandll_read_blocks (ulong dst_addr, ulong size, int large_block)
- {
- uchar *buf = (uchar *)dst_addr;
- int i;
- uint page_shift = 9;
- if (large_block)
- page_shift = 11;
- /* Read pages */
- for (i = 0; i < (size>>page_shift); i++, buf+=(1<
- nandll_read_page(buf, i, large_block);
- }
- return 0;
- }
- int copy_uboot_to_ram (void)
- {
- int large_block = 0;
- int i;
- vu_char id;
- NAND_CONTROL_ENABLE();
- NAND_ENABLE_CE();
- NFCMD_REG = NAND_CMD_READID;
- NFADDR_REG = 0x00;
- /* wait for a while */
- for (i=0; i<200; i++);
- id = NFDATA8_REG;
- id = NFDATA8_REG;
- if (id > 0x80)
- large_block = 1;
- /* read NAND Block.
- * 128KB ->240KB because of U-Boot size increase. by scsuh
- * So, read 0x3c000 bytes not 0x20000(128KB).
- */
- return nandll_read_blocks(CFG_PHY_UBOOT_BASE, COPY_BL2_SIZE, large_block);
- }
- #endif
u-boot for tiny210 ver2.2.1(by liukun321咕唧咕唧)
这次更新没有增加具体功能,只修复了小bug。另外用一定篇幅说明如何解决u-boot for tiny210 在启动友善提供的mini210 linux内核/android出现卡死在Uncompressing Linux... done, booting the kernel.阶段。在这里再次感谢CSDN网友niyufeng 提出的问题。
ver2.2的基本功能:
1. SD boot,基于linaro u-boot的SPL功能实现
2. 从SD卡的FAT分区上加载文件到SDRAM
3. 将环境变量保存至SD卡
4. 添加DM9000网卡驱动,开启网络功能(例如:tftp,nfs等)
5. 添加TAB键命令自动补全功能
6.修复bug:
修复bug 1:SD卡保存环境变量出现Writing to MMC(0)... mmc_send_cmd: error during transfer: 0x00208001 mmc write failed。
修复bug 2:每次启动只能保存一次环境变量。
7.添加NandFlash驱动,开启所有Nand cmd。
8.添加Yaffs文件系统烧写支持。
+9.修复bug:uboot for tiny210在tftp时经常出现超时现象,出现TTTT#######TTTTTT,然后Retry count exceeded; starting again问题。
本次更新对源码改动较小,只需按下面提供内容修改即可完成,故本次更新不提供源码下载。
新版本及历史版本源码下载:
ver3.1源码下载: u-boot for tiny210 ver3.1
ver3.0源码下载:u-boot for tiny 210 ver3.0
ver2.2源码下载: u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.1
ver2.0源码下载:u-boot for tiny210 ver2.0
解决tftp超时,以及总出现ARP Retry count exceeded; starting again 的重复提示 bug:
修改步骤:
1.在u-boot for tiny210 源码net/tftp.c18:
#define TIMEOUT 50000UL
2.在net/net.c中
#define ARP_TIMEOUT 50000UL
解决卡死在Uncompressing Linux... done, booting the kernel:
PS:解决u-boot for tiny210 在启动友善提供的mini210 linux内核/android出现卡死在Uncompressing Linux... done, booting the kernel.
1.由于友善提供的内核时mini210的,第一步先修改u-boot for tiny210的机器码,使之与内核机器码匹配。
修改include/configs/tiny210.h
#define MACH_TYPE_TINY210 3466
2.友善提供的是mini210的内核,根据内核和mini210 uboot里的配置(我手里没有mini210开发板),可以知道mini210的DDR2ram
和tiny210DDR2ram在bank的挂载方式是不同的,详见我的http://blog.csdn.net/liukun321/article/details/7270426 ,故需要修改内核
源码的arch/arm/mach-s5pv210/include/mach/memory.h文件26,27行内容,将Maximum of 256MiB in one bank的限制改为Maximum
of 512MiB in one bank 作如下修改:
#define SECTION_SIZE_BITS 29
#define NODE_MEM_SIZE_BITS 29
通过上述两步修改u-boot for tiny210即可成功引导linux/android.
u-boot for tiny210 ver2.2.2(by liukun321咕唧咕唧)
本次更新,修复了SD卡写入出现"data CRC error"的bug。我曾在u-boot for tiny210 ver2.1做过对这个bug的修复,我也提到过上次做的修改是不安全的,可能会对其它平台的代码产生副作用。而本次修改彻底解决了这个问题。感谢kasim,本次修改的源码由kasim提供。由于时间所限这次不再详细分析过程。只贴上本次修改的补丁文件内容。以后有时间,我会具体分析修改原因。
历史版本下载:
下面的链接提供了历史版本的源码
ver2.2源码下载: u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.1
ver2.0源码下载:u-boot for tiny210 ver2.0
--- a/board/samsung/tiny210/tiny210.c
+++ b/board/samsung/tiny210/tiny210.c
@@ -32,6 +32,8 @@
#include
#include
#include
+#include
+#include
/*Add by lk for DM9000 driver */
//#include
#include
@@ -302,9 +304,13 @@ void nand_init(void)
#endif
#ifdef CONFIG_GENERIC_MMC
+#define MOUTMMC (50000000) /* 50MHz */
int board_mmc_init(bd_t *bis)
{
int i;
+ struct s5pc110_clock *clk =
+ (struct s5pc110_clock *)samsung_get_base_clock();
+ unsigned long clk_src, clk_div, mpll, div;
/*
* MMC0 GPIO
@@ -336,6 +342,19 @@ int board_mmc_init(bd_t *bis)
/* GPG1[0:6] drv 4x */
s5p_gpio_set_drv(&s5pc110_gpio->g1, i, GPIO_DRV_4X);
}
+ clk_src = readl(&clk->res9[0]); /* CLK_SRC4 */
+ clk_src &= ~((0xf << 4) | 0xf);
+ clk_src |= (0x6 << 4) | 0x6; /* Set MMC0/1_SEL to SCLK_MPLL */
+
+ mpll = get_pll_clk(MPLL);
+ div = ((mpll + MOUTMMC) / MOUTMMC) - 1;
+
+ clk_div = readl(&clk->div4);
+ clk_div &= ~((0xf << 4) | 0xf);
+ clk_div |= (div << 4) | div;
+
+ writel(clk_src, &clk->res9[0]);
+ writel(clk_div, &clk->div4);
return (s5p_mmc_init(0, 4) || s5p_mmc_init(1, 4));
}
如果您现在拿到的是从我CSDN资源上下载的源码,您还需修改drivers/mmc/s5p_mmc.c去掉对下面红色代码部分的屏蔽:
225: while (1) {
226 mask = readl(&host->reg->norintsts);
227
228 if (mask & (1 << 15)) {
229 /* Error Interrupt */
230 writel(mask, &host->reg->norintsts);
231 printf("%s: error during transfer: 0x%08x\n" ,
232 __func__, mask);
233 return -1;
234 } else if (mask & (1 << 3)) {
u-boot for tiny210 ver3.0 (by liukun321咕唧咕唧)
在此首先要特别感谢网友李明老师和Alex Ling对我无私的帮助和支持。
这次更新,主要实现了Nand启动,并修改了前几个版本的几个小bug。ver3.0已经基本完成了u-boot的主线功能。后面我还会继续更新其它辅助功能。
之前上传的几个版本,对nandflash烧写时ECC校验是基于软件ECC,由于S5PV210的IROM中固化的启动代码(暂且称其为BL0)在读nandflash时
用的是8bit 硬件ECC。因此在烧写u-boot for tiny210到nandflash时,需要用开启了8bit 硬件ECC的 SD卡启动的u-boot 进行烧写(详见后面分析)。
您可以从下面的链接获得源码,也可以下载历史版本,并参考后面的步骤修改获得ver3.0.
ver3.0源码下载:u-boot for tiny 210 ver3.0
您也可以打开下面的链接阅读ver3.0源码
Git source tree(这是我在Gitorious建的第一个工程,对它的管理还是显的比较混乱。等我整理好另一个clone的工程,我会把链接贴上来)。
下面的链接提供了历史版本的源码
ver2.2源码下载: u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.1
ver2.0源码下载:u-boot for tiny210 ver2.0
ver3.0的基本功能:
1. SD boot,基于linaro u-boot的SPL功能实现
2. 从SD卡的FAT分区上加载文件到SDRAM
3. 将环境变量保存至SD卡
4. 添加DM9000网卡驱动,开启网络功能(例如:tftp,nfs等)
5. 添加TAB键命令自动补全功能
6.修复bug:
修复bug 1:SD卡保存环境变量出现Writing to MMC(0)... mmc_send_cmd: error during transfer: 0x00208001 mmc write failed。
修复bug 2:每次启动只能保存一次环境变量。
7.添加NandFlash驱动,开启所有Nand cmd。
8.添加Yaffs文件系统烧写支持。
+9.修改在SD卡启动时对nandflash的烧写为8bit 硬件ECC校验。(nand启动仍为软件ECC)
The booting sequence in internal ROM is as follows:
1. Disable the watchdog timer.
3. Initialize the stack and heap region.
4. Check secure key.
6. Check OM pin and load the first boot loader (The size of boot loader depends on S/W) from specific device (block number 0) to iRAM.
7. If secure booting is successful, execute integrity check
8. If integrity check passes, then jump to the first boot loader in iRAM (0xD002_0010)
The booting sequence in internal SRAM is as follows:
1. Load the second boot loader from boot device to iRAM.
2. If secure booting is successful, execute integrity check.
3. If integrity check passes, then jump to the second boot loader in iRAM (The jumping address depends on user's software)
4. If integrity check fails, then stop the first boot loader.
5. The second boot loader Initializes the DRAM controller.
6. Load the OS image from specific device (block number 1) to DRAM.
7. Jump to OS code in DRAM (0x2000_0000 or 0x4000_0000)
for(i = 0, checksum = 0; i < IMG_SIZE - SPL_HEADER_SIZE; i++)
checksum += (0x000000FF) & *a++;
-/* FLASH and environment organization */
-#define CONFIG_SYS_NO_FLASH 1
-#undef CONFIG_CMD_IMLS
-#define CONFIG_IDENT_STRING " for FriendlyLEG-TINY210"
-
-#define CONFIG_ENV_IS_IN_MMC 1
-#define CONFIG_SYS_MMC_ENV_DEV 0
-#define CONFIG_ENV_SIZE 0x4000 /* 16KB */
-#define RESERVE_BLOCK_SIZE (512)
-#define BL1_SIZE (8 << 10) /*8 K reserved for BL1*/
-#define CONFIG_ENV_OFFSET (RESERVE_BLOCK_SIZE + BL1_SIZE + ((16 + 512) * 1024))
-#define CONFIG_DOS_PARTITION 1
然后在
460:
+/* FLASH and environment organization */
+#define CONFIG_SYS_NO_FLASH 1
+#undef CONFIG_CMD_IMLS
+#define CONFIG_IDENT_STRING " for FriendlyLEG-TINY210"
+#if 1
+#define CONFIG_TINY210_NAND_BOOT 1
+#endif
+#if 0
+#define CONFIG_TINY210_MMC_BOOT 1
+#endif
+/*MMC BOOT */
+#if defined(CONFIG_TINY210_MMC_BOOT)
+#define CFG_NAND_HWECC
+#define CONFIG_NAND_BL1_8BIT_ECC
+#define CONFIG_ENV_IS_IN_MMC 1
+#define CONFIG_SYS_MMC_ENV_DEV 0
+#define CONFIG_ENV_SIZE 0x4000 /* 16KB */
+#define RESERVE_BLOCK_SIZE (512)
+#define BL1_SIZE (8 << 10) /*8 K reserved for BL1*/
+#define CONFIG_ENV_OFFSET (RESERVE_BLOCK_SIZE + BL1_SIZE + ((16 + 512) * 1024))
+#endif
+
+#define CONFIG_DOS_PARTITION 1
+
+/*NAND_BOOT by lk */
+#if defined(CONFIG_TINY210_NAND_BOOT)
+#define CONFIG_S5PC11X
+#define CONFIG_ENV_IS_IN_NAND 1
+#define CONFIG_ENV_SIZE 0x4000 /* 16KB */
+#define CONFIG_ENV_OFFSET 0x40000
+#endif
#define CONFIG_TINY210_NAND_BOOT 1
即可实现nand启动
#define CONFIG_TINY210_MMC_BOOT 1
即可实现sd启动
2.修改board/samsung/tiny210/Makefile 即可通过定义CONFIG_TINY210_MMC_BOOT/CONFIG_TINY210_NAND_BOOT,分别实现SD启动和NAND启动。
ifdef CONFIG_SPL_BUILD
+
+ifdef CONFIG_TINY210_MMC_BOOT
COBJS += mmc_boot.o
endif
+ifdef CONFIG_TINY210_NAND_BOOT
COBJS += nand_cp.o
+endif
+endif
屏蔽掉38行的COBJS += nand_cp.o
3.修改实现8bit 硬件ECC校验。board/samsung/tiny210/nand.c中
44:static struct nand_ecclayout s3c_nand_oob_16 = {
.eccbytes = 4,
.eccpos = {1, 2, 3, 4},
.oobfree = {
{.offset = 6,
. length = 10}}
};
-
52:+static struct nand_ecclayout s3c_nand_oob_64_8bit = {
+ .eccbytes = 52,
+ .eccpos = {
+ 12,13,14,15,
+ 16,17,18,19,20,21,22,23,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63},
+ .oobfree = {
+ {.offset = 2,
+ .length = 10}}
+};
/* Nand flash oob definition for SLC 2k page size by jsgood */
static struct nand_ecclayout s3c_nand_oob_64 = {
屏蔽掉下面两个函数中的while
上面的信息可见【25】【24】位是对MLC nandflash的状态位,而tiny210上用的是SLC的nandflash。所以进行下面的屏蔽。
static void s3c_nand_wait_enc(void)
{
+// while (!(readl(NFECCSTAT) & NFSTAT_ECCENCDONE)) {}
}
/*
@@ -187,7 +200,7 @@ static void s3c_nand_wait_enc(void)
*/
static void s3c_nand_wait_dec(void)
{
+// while (!(readl(NFECCSTAT) & NFSTAT_ECCDECDONE)) {}
}
@@ -1042,9 +1067,24 @@
int board_nand_init(struct nand_chip *nand)
nand_type = S3C_NAND_TYPE_SLC;
nand->ecc.size = 512;
nand->ecc.bytes = 4;
-
1060:+
+ if ((1024 << (tmp & 3)) == 4096) {
+ /* Page size is 4Kbytes */
+ nand->ecc.read_page = s3c_nand_read_page_8bit;
+ nand->ecc.write_page = s3c_nand_write_page_8bit;
+ nand->ecc.read_oob = s3c_nand_read_oob_8bit;
+ nand->ecc.write_oob = s3c_nand_write_oob_8bit;
+ nand->ecc.layout = &s3c_nand_oob_128;
+ nand->ecc.hwctl = s3c_nand_enable_hwecc_8bit;
+ nand->ecc.calculate = s3c_nand_calculate_ecc_8bit;
+ nand->ecc.correct = s3c_nand_correct_data_8bit;
+ nand->ecc.size = 512;
+ nand->ecc.bytes = 13;
+ nand->options |= NAND_NO_SUBPAGE_WRITE;}
+ else
if ((1024 << (tmp & 0x3)) > 512) {
- nand->ecc.read_page = s3c_nand_read_page_1bit;
1073:+#if defined(CONFIG_NAND_4BIT_ECC)
+ nand->ecc.read_page = s3c_nand_read_page_1bit;
nand->ecc.write_page = s3c_nand_write_page_1bit;
nand->ecc.read_oob = s3c_nand_read_oob_1bit;
nand->ecc.write_oob = s3c_nand_write_oob_1bit;
@@ -1053,6 +1093,18 @@ int board_nand_init(struct nand_chip *nand)
nand->ecc.calculate = s3c_nand_calculate_ecc;
nand->ecc.correct = s3c_nand_correct_data;
nand->options |= NAND_NO_SUBPAGE_WRITE;
1083:+#endif
+nand->ecc.read_page = s3c_nand_read_page_8bit;
+ nand->ecc.write_page = s3c_nand_write_page_8bit;
+ nand->ecc.read_oob = s3c_nand_read_oob_8bit;
+ nand->ecc.write_oob = s3c_nand_write_oob_8bit;
+ nand->ecc.layout = &s3c_nand_oob_64_8bit;
+ nand->ecc.hwctl = s3c_nand_enable_hwecc_8bit;
+ nand->ecc.calculate = s3c_nand_calculate_ecc_8bit;
+ nand->ecc.correct = s3c_nand_correct_data_8bit;
+ nand->ecc.size = 512;
+ nand->ecc.bytes = 13;
+ nand->options |= NAND_NO_SUBPAGE_WRITE;
} else {
nand->ecc.layout = &s3c_nand_oob_16;
}
4,修改nand_cp.c文件。
+//#include
+#include
+#define COPY_BL2_SIZE 0x80000
@@ -98,7 +98,7 @@ static int nandll_read_blocks (ulong dst_addr, ulong size, int large_block)
page_shift = 11;
/* Read pages */
98: for (i =(0x6000>>page_shift); i < (size>>page_shift); i++, buf+=(1<
}
0x6000是24k后的第一个地址,也就是从这个nandflash的这个偏移地址开始cp内容到DRAM。
@@ -128,8 +128,29 @@ int copy_uboot_to_ram (void)
128:+ return nandll_read_blocks(CONFIG_SYS_TEXT_BASE, COPY_BL2_SIZE, large_block);
+}
+void board_init_f(unsigned long bootflag)
+{
+ __attribute__((noreturn)) void (*uboot)(void);
+ copy_uboot_to_ram();
+
+ /* Jump to U-Boot image */
+ uboot = (void *)CONFIG_SYS_TEXT_BASE;
+ //while(1);
+ (*uboot)();
+ /* Never returns Here */
}
-
+
+/* Place Holders */
+void board_init_r(gd_t *id, ulong dest_addr)
+{
+ /* Function attribute is no-return */
+ /* This Function never executes */
+ while (1)
+ ;
+}
+
+void save_boot_params(u32 r0, u32 r1, u32 r2, u32 r3) {}
5.修改board/samsung/tiny210/tools/mkv210_image.c
8:#define BUFSIZE (24*1024)
#define IMG_SIZE (24*1024)
这个参数的修改是为了便于实现nandboot和SDboot的切换,因为
在board/samsung/tiny210/mmc_boot.c第四十九行可以找到
#define MOVI_BL2_POS ((eFUSE_SIZE / MOVI_BLKSIZE) + MOVI_BL1_BLKCNT + MOVI_ENV_BLKCNT)
当sdboot的BL1阶段要从MOVI_BL2_POS(24k + 1k(sd卡的第0扇区))这个偏移位置开始向DRAM cp代码。虽然启动时只会从nand或SD卡一次性读取16K内容,但是为了统一两种启动方式tiny210-spl.bin的大小,生成24k大小的tiny210-spl.bin(这并不会影响校验和,因为文件尾是由0填充)。
另外我在源码的根目录下写了一个简单的脚本make-tiny210-boot.sh,用于合并tiny210-spl.bin和u-boot.bin文件->生成tiny210-uboot.bin。这样我们以后烧写uboot时就不用像老版本那样分别烧写两个文件了。
至此ver3,0修改完成.
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- tiny210_config
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- all spl
由于我的系统下装有两套交叉工具链,所以没有把 /opt/FriendlyARM/toolschain/4.5.1/bin/ 添加到环境变量,在使用工具链时要指明路径。
1.sd启动
将SD卡通过读卡器接上电脑(或直接插入笔记本卡槽),通过"cat /proc/partitions"找出SD卡对应的设备,我的设备节点是/dev/sdb.
执行下面的命令
$sudo dd iflag=dsync oflag=dsync if=tiny210-uboot.bin of=/dev/sdb seek=1
对于BCH算法目前通常以512Byte或者1024Byte为单位处理,因为BCH按位处理数据,所以是4096bit或者8192bit,这里的4096/8192bit是原始数据,BCH需要生成一定的校验数据。下面简要介绍下原理
设最大纠错能力为t
如果选用4096bit的原始数据长度,则模式为BCH(8191,8191-13×t,t,13)
如果选用8192bit的原始数据长度,则模式为BCH(16383,16383-14×t,t,14)
校验数据长度就是13×t,或者14×tbit
所以平均1024+32Byte的MLC 大多建议使用8bit/512Byte ECC
平均1024+45Byte的MLC大多建议使用24Bit/1024Byte ECC, 此时需要14×24bit=42Byte的检验数据空间
以8bit/512Byte BCH方式的ECC为例,控制器写数据到NAND Flash时,每512Byte数据经过BCH模块就会生成13Byte的校验数据(当然剩下的16-13=3Byte也可以作为某种用途的数据,可以任意使用0-3Byte而不会改变ECC的使用),这些数据一起写入到NAND Flash中。控制器从NAND Flash中读取数据的时候需要将原始数据和校验数据一起读出经过BCH模块,BCH模块计算伴随矩阵首先可以判断出是否出现了错误,如果出现了错误需要计算错误位置多项式,然后解多项式,得到错误位置(目前主要使用Chien-search方法),因为是位错误,找到错误的位置以后取反以后就是正确的数据。只要是错误个数小于等于8,BCH都能够找到错误的位置,但是如果错误个数超过了8,对于BCH来说已经没有办法纠正错误了,只能报告出现了不可以纠正的情况。
u-boot for tiny210 ver3.1 (by liukun321咕唧咕唧)
这次更新,实现了自动识别Nand或MMC/SD启动(环境变量统一存放于Nandflash中),统一SD及Nand启动模式的nandflash驱动均为8bit HW ECC校验,并调整部分源码文件的结构。 您可以从下面的链接获得源码,也可以下载历史版本,并参考后面的步骤修改获得ver3.1。本次修改的原理简单不做太详细的分析。
最新源码下载:
ver4.0源码下载:u-boot for tiny210 ver4.0
ver3.1下载:
ver3.1源码下载: u-boot for tiny210 ver3.1
下面的链接提供了历史版本的源码
ver3.0源码下载:u-boot for tiny 210 ver3.0
ver2.2源码下载: u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.1
ver2.0源码下载:u-boot for tiny210 ver2.0
1. SD boot,基于linaro u-boot的SPL功能实现
2. 从SD卡的FAT分区上加载文件到SDRAM
3. 将环境变量保存至SD卡
4. 添加DM9000网卡驱动,开启网络功能(例如:tftp,nfs等)
5. 添加TAB键命令自动补全功能
6.修复bug:
修复bug 1:SD卡保存环境变量出现Writing to MMC(0)... mmc_send_cmd: error during transfer: 0x00208001 mmc write failed。
修复bug 2:每次启动只能保存一次环境变量。
7.添加NandFlash驱动,开启所有Nand cmd。
8.添加Yaffs文件系统烧写支持。
9.修改在SD卡启动及nand启动时对nandflash的烧写为8bit 硬件ECC校验。
10.添加Nandflash启动。
#include
#include
#include
-
+#include
+#include
+#include
.globl _start
_start: b reset
ldr pc, _undefined_instruction
@@ -176,8 +178,61 @@ call_board_init_f:
ldr sp, =(CONFIG_SYS_INIT_SP_ADDR)
bic sp, sp, #7 /* 8-byte alignment for ABI compliance */
ldr r0,=0x00000000
+#if defined(CONFIG_TINY210) || defined(CONFIG_MINI210)
+ adr r4, _start
+ ldr r5,_TEXT_BASE
+ cmp r5,r4
+ beq board_init_in_ram
+
+ ldr r0, =PRO_ID_BASE
+ ldr r1, [r0,#OMR_OFFSET]
+ bic r2, r1, #0xffffffc1
+
+ /* NAND BOOT */
+ cmp r2, #0x0 @ 512B 4-cycle
+ moveq r3, #BOOT_NAND
+
+ cmp r2, #0x2 @ 2KB 5-cycle
+ moveq r3, #BOOT_NAND
+
+ cmp r2, #0x4 @ 4KB 5-cycle 8-bit ECC
+ moveq r3, #BOOT_NAND
+
+ cmp r2, #0x6 @ 4KB 5-cycle 16-bit ECC
+ moveq r3, #BOOT_NAND
+
+ cmp r2, #0x8 @ OneNAND Mux
+ moveq r3, #BOOT_ONENAND
+
+ /* SD/MMC BOOT */
+ cmp r2, #0xc
+ moveq r3, #BOOT_MMCSD
+
+ /* NOR BOOT */
+ cmp r2, #0x14
+ moveq r3, #BOOT_NOR
+
+ /* Uart BOOTONG failed */
+ cmp r2, #(0x1<<4)
+ moveq r3, #BOOT_SEC_DEV
+
+ ldr r0, =INF_REG_BASE
+ str r3, [r0, #INF_REG3_OFFSET]
+
+ ldr r1, [r0, #INF_REG3_OFFSET]
+ cmp r1, #BOOT_NAND /* 0x0 => boot device is nand */
+ beq nand_boot_210
+ cmp r1, #BOOT_MMCSD
+ beq mmcsd_boot_210
+
+nand_boot_210:
+ bl board_init_f_nand
+
+mmcsd_boot_210:
+ bl board_init_f
+board_init_in_ram:
+#endif
bl board_init_f
-
蓝色代码实现的功能:将PRO_ID_BASE + OMR_OFFSET (这是一个启动方式寄存器,从中可以得到上电时的启动状态)地址处的读取启动信息,值0x0~0x6分别对应几种不同的nandflash启动,0xc对应MMC/SD启动。当确定是某一种启动方式后,将其对应的十六进制存放于INFORM3寄存器中。
SOBJS += reset.o
COBJS += clock.o
+ifdef CONFIG_SPL_BUILD
+COBJS += mmc_boot.o
+COBJS += nand_cp.o
+endif
SRCS := $(SOBJS:.o=.S) $(COBJS:.o=.c)
OBJS := $(addprefix $(obj),$(COBJS) $(SOBJS))
修改board/samsung/tiny210/Makefile删除下面红色代码:
-COBJS += mmc_boot.o
-COBJS += nand_cp.o
-endif
134 void board_init_f _nand(unsigned long bootflag)
135 {
136 __attribute__((noreturn)) void (*uboot)(void);
137 copy_uboot_to_ram_nand();
244 void board_init_f (ulong) __attribute__ ((noreturn));
245 #if defined(CONFIG_TINY210) || defined(CONFIG_MINI210)
246 void board_init_f_nand (ulong) __attribute__ ((noreturn));
247 #endif
248 void board_init_r (gd_t *, ulong) __attribute__ ((noreturn));
249 int checkboard (void);
262 {
263 while(1);
264 }
265
266 void board_init_f(ulong bootflag)
267 {
268 bd_t *bd;
269 init_fnc_t **init_fnc_ptr;
270 gd_t *id;
105 $(obj)u-boot-spl.bin $(obj)$(BOARD)-spl.bin
+106 cat $(obj)$(BOARD)-spl.bin $(TOPDIR)/u-boot.bin > $(TOPDIR)/$(BOARD)-uboot.bin
429 #define CONFIG_SYS_NO_FLASH 1
430 #undef CONFIG_CMD_IMLS
431 #define CONFIG_IDENT_STRING " for FriendlyLEG-TINY210"
432 #define CONFIG_DOS_PARTITION 1
433
434 /*NAND_BOOT & MMCSD_BOOT by lk */
435 #define CONFIG_S5PC11X
436 #define CONFIG_ENV_IS_IN_NAND 1
437 #define CONFIG_ENV_SIZE 0x4000 /* 16KB */
438 #define RESERVE_BLOCK_SIZE (2048)
439 #define BL1_SIZE (8 << 10) /*8 K reserved for BL1*/
440 #define CONFIG_ENV_OFFSET 0x40000
441 #define CFG_NAND_HWECC
442 #define CONFIG_NAND_BL1_8BIT_ECC
443 #define CONFIG_8BIT_HW_ECC_SLC 1
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- tiny210_config
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- all spl
1.sd启动
将SD卡通过读卡器接上电脑(或直接插入笔记本卡槽),通过"cat /proc/partitions"找出SD卡对应的设备,我的设备节点是/dev/sdb.
执行下面的命令
$sudo dd iflag=dsync oflag=dsync if=tiny210-uboot.bin of=/dev/sdb seek=1
在修改ver3.1的时候,只是扫了一眼源码,看到支持yaffs写命令,就想当然的认为“大页NAND出来这么多年了,uboot应该支持yaffs2的烧写了”。由于时间问题,当时也没有测试这个功能。这几天仔细看了源码,假象啊。ver3.1还是不支持yaffs2的烧写的。只支持yaffs(小页nand)的烧写。在此郑重的向被我“忽悠”的网友道歉。 也许现在烧写yaffs2的问题早已经被朋友们解决了,毕竟过去这么长时间了,对于有u-boot移植经验的朋友,这个小bug 1天应该就可以搞定。 现在写这个bug的解决方案,对大牛们来说可能没什么价值了,但是希望能给后来的朋友提供点移植思路。好了,废话不多说,进入正题。
ver4.0源码下载:u-boot for tiny210 ver4.0
下面的链接提供了历史版本的源码
ver3.1源码下载: u-boot for tiny210 ver3.1
ver3.0源码下载:u-boot for tiny 210 ver3.0
ver2.2源码下载: u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.2
ver2.1源码下载:u-boot for tiny210 ver2.1
ver2.0源码下载:u-boot for tiny210 ver2.0
ver4.0的基本功能:
1. SD boot,基于linaro u-boot的SPL功能实现
2. 从SD卡的FAT分区上加载文件到SDRAM
3. 将环境变量保存至SD卡
4. 添加DM9000网卡驱动,开启网络功能(例如:tftp,nfs等)
5. 添加TAB键命令自动补全功能
6.修复bug:
修复bug 1:SD卡保存环境变量出现Writing to MMC(0)... mmc_send_cmd: error during transfer: 0x00208001 mmc write failed。
修复bug 2:每次启动只能保存一次环境变量。
7.添加NandFlash驱动,开启所有Nand cmd。
8.添加Yaffs文件系统烧写支持。
9.修改在SD卡启动及nand启动时对nandflash的烧写为8bit 硬件ECC校验。
10.添加Nandflash启动。
+12.添加yaffs2文件系统烧写支持。
+13.添加显示Nandflash烧写进度。
在正式修改u-boot前,希望大家能看一下这篇bloghttp://blog.csdn.net/liukun321/article/details/8558591。对yaffs2的原理有个大概了解。其实u-boot烧写yaffs2与往nand烧写普通数据区别在于:yaffs2的.img镜像中不仅包含了根文件系统的数据,而且还包含了oob区的数据。打开.img镜像截取第一块的oob数据内容如下图:
800h-830h就是镜像中第一块的oob数据(共64byte),u-boot烧写yaffs2时需要把这部分数据烧到nand的oob区。而800h开始的前两字节是用于标记坏块的,如果不是坏块则全为FF。从第三字节到第40个字节存放的是yaffs2每块的“标记数据”(这个词用的可能不恰当)。第41到第64字节存放的是yaffs2自己的ECC校验值。
这里还要说一下u-boot与友善的Superboot对烧写yaffs2的区别:Superboot烧写yaffs2是用的应该是4bit HW(硬件)ECC,那么nandflash第41到第64字节存放的数据就不在是yaffs2镜像的ECC值了,而是烧写过程中产生的4bit HW(硬件)ECC值--->对应在内核配置时要开启硬件ECC校验,关yaffs2自己的ECC校验。而u-boot烧写时是把yaffs2镜像文件里的oob数据烧到nandflash的oob区中,相当于用的是yaffs2自己的ECC校验,对应内核配置---->关硬件ECC,开启yaffs2自己的ECC(对于内核配置,我后面还会具体说明)。ver4.0 修改过程如下(会贴源码,在此声明一下,贴源码不是为了凑字数,blog不是写论文没有凑字数的必要,因为在贴源码的过程会穿插解释,只是为了更直观体现修改原理,这对“牛人”来说可能没什么用,“牛人”直接看源码就可以了。但是还有很多新手,新手需要更多的解释,希望各位“牛人”见谅):
拿到ver3.1的源码
1.在include/configs/tiny210.h 文件中对应行处添加下面红字部分:
412 #define CONFIG_CMD_NAND
413 #if defined(CONFIG_CMD_NAND)
414 #define CONFIG_CMD_NAND_YAFFS 1
415 #define CONFIG_CMD_NAND_YAFFS2 1
416 #define CONFIG_CMD_MTDPARTS
417 #define CONFIG_SYS_MAX_NAND_DEVICE 1
.............................
423 #define NF_TRANSRnB() do { while(!(NFSTAT_REG & (1 << 0))); } whil e(0)
—424 #define CONFIG_CMD_NAND_YAFFS_SKIPFB 1
425 #define CONFIG_NAND_USE_CHIP_NAME 1
426 #undef CFG_NAND_FLASH_BBT
427 #endif
由于在烧写时不需要跳过第一个good block ,所以去掉定义 #define CONFIG_CMD_NAND_YAFFS_SKIPFB 1
2.修改common/cmd_nand.c
592 WITH_DROP_FFS);
593 #endif
594 #if defined(CONFIG_CMD_NAND_YAFFS)&&(!defined(CONFIG_CMD_NAND_YAFFS2))
595 } else if (!strcmp(s, ".yaffs")) {
596 if (read) {
597 printf("Unknown nand command suffix '%s'.\n", s);
598 return 1;
599 }ret = nand_write_skip_bad(nand, off, &rwsize,
(u_char *)addr, WITH_YAFFS_OOB);
600 #endif
+601 #if defined(CONFIG_CMD_NAND_YAFFS)&&defined(CONFIG_CMD_NAND_YAFFS2)
+602 }else if ( s != NULL &&(!strcmp(s, ".yaffs") || !strcmp(s, ".yaffs1"))){
+603 if(read) {
+604 printf("nand read.yaffs[1] is not provide temporarily!");
+605 } else {
+606 nand->rw_oob = 1;
+607 #if defined(CONFIG_CMD_NAND_YAFFS_SKIPFB)
+608 nand->skipfirstblk = 1;
+609 #else
+610 nand->skipfirstblk = 0;
+611 #endif
+612 ret = nand_write_skip_bad(nand, off, &rwsize,
+613 (u_char *)addr, WITH_YAFFS_OOB);
+614
+615 #if defined(CONFIG_CMD_NAND_YAFFS_SKIPFB)
+616 nand->skipfirstblk = 0;
+617 #endif
+618 nand->rw_oob = 0;
+619 }
+620 #endif
621 } else if (!strcmp(s, ".oob")) {
622 /* out-of-band data */
623 mtd_oob_ops_t ops = {
nand->rw_oob = 0;,nand->skipfirstblk 是新定义的两个变量,分别作为烧写oob区标记变量和跳过第一个block的标记变量.nand_write_skip_bad(nand, off, &rwsize,(u_char *)addr, WITH_YAFFS_OOB); 函数执行时在烧写nand过程中会烧写oob区。
3. 修改drivers/mtd/nand/nand_util.c 文件的int nand_write_skip_bad 函数.使之支持烧写oob区
485 u_char *p_buffer = buffer;
486 int need_skip;
487
488 /*****************Modified by lk***********************/
+489 #if defined(CONFIG_CMD_NAND_YAFFS2)
+490 if(nand->rw_oob==1) {
+491 size_t oobsize = nand->oobsize;
+492 size_t datasize = nand->writesize;
+493 int datapages = 0;
+494
+495
+496 if (((*length)%(nand->oobsize+nand->writesize)) != 0) {
+497 printf ("Attempt to write error length data!\n");
+498 return -EINVAL;
+499 }
+500
+501 datapages = *length/(datasize+oobsize);
+502 *length = datapages*datasize;
+503 left_to_write = *length;
+504
+505 }
+506 else
+507 #else/*************************************************/
508 if (flags & WITH_YAFFS_OOB) {
509 if (flags & ~WITH_YAFFS_OOB)
510 return -EINVAL;
511
512 int pages;
513 pages = nand->erasesize / nand->writesize;
514 blocksize = (pages * nand->oobsize) + nand->erasesize;
515 if (*length % (nand->writesize + nand->oobsize)) {
516 printf ("Attempt to write incomplete page"
517 " in yaffs mode\n");
518 return -EINVAL;
519 }
520 } else
+521 #endif
522 {
523 blocksize = nand->erasesize;
524 }
.....................................
544 if (need_skip < 0) {
545 printf ("Attempt to write outside the flash area\n");
546 *length = 0;
547 return -EINVAL;
548 }
549 /********************Modified by lk**********************************/
+550 #if !defined(CONFIG_CMD_NAND_YAFFS2)
551 if (!need_skip && !(flags & WITH_DROP_FFS)) {
552 rval = nand_write (nand, offset, length, buffer);
...........................
559 return rval;
560 }
+561 #endif
562 /*******************************************************************/
563 while (left_to_write > 0) {
564 size_t block_offset = offset & (nand->erasesize - 1);
565 size_t write_size, truncated_write_size;
567 WATCHDOG_RESET ();
568
569 if (nand_block_isbad (nand, offset & ~(nand->erasesize - 1))) {
570 printf ("Skip bad block 0x%08llx\n",
571 offset & ~(nand->erasesize - 1));
572 offset += nand->erasesize - block_offset;
573 continue;
574 }
575 //********************Modified by lk*******************************/
+576 #if defined(CONFIG_CMD_NAND_YAFFS)&&defined(CONFIG_CMD_NAND_YAFFS2)
+577 if(nand->skipfirstblk==1) {
+578 nand->skipfirstblk=0;
+579 printf ("Skip the first good block %llx\n",
+580 offset & ~(nand->erasesize - 1));
+581 offset += nand->erasesize - block_offset;
+582 continue;
+583 }
+584 #endif
585 /****************************************************************/
586 if (left_to_write < (nand->erasesize- block_offset))//blocksize
587 write_size = left_to_write;
588 else
589 write_size = nand->erasesize- block_offset;
590 /*******************************Modified by lk*****************************/
591 #if defined(CONFIG_CMD_NAND_YAFFS)&&(!defined(CONFIG_CMD_NAND_YAFFS2))
592 if (flags & WITH_YAFFS_OOB) {
593
594 int page, pages;
............................................
609 ops.oobbuf = ops.datbuf + pagesize;
611 rval = nand->write_oob(nand, offset, &ops);
612 if (!rval)
613 break;
614
615 offset += pagesize;
616 p_buffer += pagesize_oob;
617 }
618 }
619 else
620 #endif/*********************************************************/
621 {
622 truncated_write_size = write_size;
623 #ifdef CONFIG_CMD_NAND_TRIMFFS
624 if (flags & WITH_DROP_FFS)
625 truncated_write_size = drop_ffs(nand, p_buffer,
626 &write_size);
627 #endif
+628 printf("\rWriting at 0x%llx -- ",offset);//Modified by lk 显示烧写位置
629 rval = nand_write(nand, offset, &truncated_write_size,
630 p_buffer);
631 //************************Modified by lk****************************
+632 #if (defined(CONFIG_CMD_NAND_YAFFS)&&(!defined(CONFIG_CMD_NAND_YAFFS2)))
633 offset += write_size;
634 p_buffer += write_size;
+635 #endif
636 //******************************************************************
637 }
638
639 if (rval != 0) {
640 printf ("NAND write to offset %llx failed %d\n",
641 offset, rval);
642 *length -= left_to_write;
643 return rval;
644 }
645 left_to_write -= write_size;
+646 printf("%d%% is complete.",100-(left_to_write/(*length/100)));//Modified by lk 显示烧写进度
647 //**************************************Modified by lk***************************
+648 #if (defined(CONFIG_CMD_NAND_YAFFS)&&defined(CONFIG_CMD_NAND_YAFFS2))
+649 offset += write_size;
+650 if(nand->rw_oob==1) {
+651 p_buffer += write_size+(write_size/nand->writesize*nand->oobsize);
+652 } else {
+653 p_buffer += write_size;
+654 }
+655 #else
656 p_buffer += write_size;
+657 #endif
658 //******************************************************************************
659 }
660
661 return 0;
662 }
因为在上面函数中会调用nand_write函数故做下面修改。
4.修改drivers/mtd/nand/nand_base.c文件,使nand_write支持64byte,oob的烧写
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1948 size_t *retlen, const uint8_t *buf)
1949 {
1950 struct nand_chip *chip = mtd->priv;
1951 int ret;
+1952 #if defined(CONFIG_CMD_NAND_YAFFS)
1953 /*Modified by lk*/
+1954 int oldopsmode = 0;
+1955 if(mtd->rw_oob==1) {
+1956
+1957 size_t oobsize = mtd->oobsize;
+1958 size_t datasize = mtd->writesize;
+1959 int i = 0;
+1960 uint8_t oobtemp[oobsize];
+1961 int datapages = 0;
+1962
+1963 datapages = len/(datasize);
+1964 for(i=0;i<(datapages);i++) {
+1965 memcpy((void *)oobtemp,
+1966 (void *)(buf+datasize*(i+1)),oobsize);
+1967 memmove((void *)(buf+datasize*(i+1)),(void *)(buf+datasize*(i+1)+o obsize),(datapages-(i+1))*(datasize)+(datapages-1)*oobsize);
+1968 }
1969 #endif
1970
1971 /* Do not allow writes past end of device */
1972 if ((to + len) > mtd->size)
1973 return -EINVAL;
1974 if (!len)
1975 return 0;
1976 nand_get_device(chip, mtd, FL_WRITING);
1977 chip->ops.len = len;
1978 chip->ops.datbuf = (uint8_t *)buf;
1979 //chip->ops.oobbuf = NULL;
1980
+1981 #if defined(CONFIG_CMD_NAND_YAFFS)
+1982 /*Modified by lk*/
+1983 if(mtd->rw_oob!=1) {
+1984 chip->ops.oobbuf = NULL;
+1985 } else {
+1986 chip->ops.oobbuf = (uint8_t *)(buf+len);
+1987 chip->ops.ooblen = mtd->oobsize;
+1988 oldopsmode = chip->ops.mode;
+1989 chip->ops.mode = MTD_OOB_RAW;
+1990 }
+1991 #else
1992 chip->ops.oobbuf = NULL;
+1993 #endif
1994
1995 ret = nand_do_write_ops(mtd, to, &chip->ops);
1996
1997 *retlen = chip->ops.retlen;
1998
1999 nand_release_device(mtd);
2000
+2001 #if defined(CONFIG_CMD_NAND_YAFFS)
+2002 /*Modified by lk*/
+2003 chip->ops.mode = oldopsmode;
+2004 #endif
2005
2006 return ret;
2007 }
5.修改include/linux/mtd/mtd.h 添加两变量定义
238 void (*put_device) (struct mtd_info *mtd);
+239 #if defined(CONFIG_CMD_NAND_YAFFS)
+240 u_char rw_oob;
+241 u_char skipfirstblk;
+242 #endif
至此 u-boot for tiny210 ver4.0修改完毕.
$make distclean
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- tiny210_config
$make ARCH=arm CROSS_COMPILE=/opt/FriendlyARM/toolschain/4.5.1/bin/arm-none-linux-gnueabi- all spl
1.sd启动
将SD卡通过读卡器接上电脑(或直接插入笔记本卡槽),通过"cat /proc/partitions"找出SD卡对应的设备,我的设备节点是/dev/sdb.
执行下面的命令
$sudo dd iflag=dsync oflag=dsync if=tiny210-uboot.bin of=/dev/sdb seek=1
另外需更改内核配置:
1.去掉S3C NAND Hardware ECC 选项
2.选择yaffs2自己的ECC校验算法。
File systems --->
[*] Miscellaneous filesystems --->
<*> YAFFS2 file system support │ │
-*- 512 byte / page devices │ │
[ ] Use older-style on-NAND data format with pageStatus byt│ │
[*] Lets Yaffs do its own ECC │ │
[ ] Use the same ecc byte order as Steven Hill's nand_e│ │
-*- 2048 byte (or larger) / page devices │ │
[*] Autoselect yaffs2 format
配置好内核以后重新编译内核。
3.去掉内核的软件ECC校验。
修改内核\drivers\mtd\nand\S3c_nand.c
1172:#else
1173: nand->ecc.mode = NAND_ECC_NONE;
根据友善内核的分区表:
内核的烧写位置是0x600000开始的区域,文件系统烧写位置为0xe00000开始的区域。
用友善的镜像做烧写文件系统的测试,用下面三条命令完成烧写yaffs2文件系统(注:在烧写yaffs2时要擦除0xe00000开始后面所有的块中的数据,否则会由于残存的数据影响Android启动)
烧写过程如下图:
启动信息如下图:(注:若在校正触摸屏出现Calibration failed.的问题,多尝试校正(保存)几次就通过了。测试时偶尔出现过这个问题。)