文章目录
- 1.导入必要模块
- 2.超参数设置
- 3.数据准备
- 4.打印部分加载的数据
- 5.模型建立
- 6.训练
1.导入必要模块
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
2.超参数设置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
input_size = 784
hidden_size = 500
num_classes = 10
num_epochs = 2
batch_size = 100
learning_rate = 0.001
3.数据准备
train_dataset = torchvision.datasets.MNIST(root='./data',
train = True,
transform=transforms.ToTensor(),
download=True)
test_dataset = torchvision.datasets.MNIST(root='./data',
train = False,
transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
4.打印部分加载的数据
examples = iter(test_loader)
example_data, example_targets = examples.next()
for i in range(6):
plt.subplot(2, 3, i+1)
plt.imshow(example_data[i][0], cmap='gray')
plt.show()

5.模型建立
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.input_size = input_size
self.l1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.l2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.l1(x)
out = self.relu(out)
out = self.l2(out)
return out
6.训练
model = NeuralNet(input_size, hidden_size, num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1)%100==0:
print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss:{loss.item():.4f}')
with torch.no_grad():
n_correct = 0
n_samples = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
n_samples += labels.size(0)
n_correct += (predicted == labels).sum().item()
acc = 100.0*n_correct / n_samples
print(f'Accuracy of the network on the 1000 test images:{acc}%')
