- Spark单机伪分布式环境搭建、完全分布式环境搭建、Spark-on-yarn模式搭建
遇安.YuAn
Spark大数据平台组件搭建hadoop大数据Sparkscala环境搭建
搭建Spark需要先配置好scala环境。三种Spark环境搭建互不关联,都是从零开始搭建。如果将文章中的配置文件修改内容复制粘贴的话,所有配置文件添加的内容后面的注释记得删除,可能会报错。保险一点删除最好。Scala环境搭建上传安装包解压并重命名rz上传如果没有安装rz可以使用命令安装:yuminstall-ylrzsz这里我将scala解压到/opt/module目录下:tar-zxvf/op
- (一)spark是什么?
一智哇
大数据框架学习sparkbigdata大数据
1.spark是什么?spark是一个用来实现快速,通用的集群计算平台spark适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理,迭代算法,交互式查询,流处理。通过在一个统一的框架下支持这些不同的计算,spark使我们可以简单而低耗地把各种处理流程整合在一起。2.spark的用途(1):数据科学任务具备SQL、统计、预测建模(机器学习)等方面的经验,以及一定的python,matlab
- spark hdfs 常用命令
毛球饲养员
sparksparkhdfs
目录lsrmgettext以下按照使用频率和使用先后顺序排序(纯个人习惯)ls列出hdfs文件系统路径下的目录和文件hdfsdfs-ls列出hdfs文件系统路径下所有的目录和文件hdfsdfs-ls-Rrmhadoopfs-rm...hadoopfs-rm-r...每次可以删除多个文件或目录getlocalfile不能和hdfsfile名字不能相同,否则会提示文件已存在,没有重名的文件会复制到本地
- 常用spark命令
会拉小提琴的左脚
大数据sparkhadoophdfs
--spark启动localhost$spark-sql--masteryarn启动主节点yarn模式--查看hdfs文件hdfsdfs-ls/spark/myDatabase.db查看我们建的表其实是是建立在hdfs里面hdfsdfs-du-h/spark/myDatabase.db查看我们的文件大小也就是我们的表的大小要接近最小的block大小如64M或者128M-h是以我们合适的单位去展示大
- Spark详解二
卢子墨
Spark原理实战总结spark
八、Spark部署模式1、Local本地模式:运行于本地spark-shell--masterlocal[2](local[2]是说,执行Application需要用到CPU的2个核)2、Standalone独立模式:Spark自带的一种集群模式Spark自己管理集群资源,此时只需要将Hadoop的HDFS启动Master节点有master,Slave节点上有worker启动./bin/spark
- Spark基本命令
chenworeng5605
大数据scalashell
一、spark所在目录cdusr/local/spark二、启动spark/usr/local/spark/sbin/start-all.sh启动Hadoop以及Spark:bash./starths.sh浏览器查看:172.16.31.17:8080停止Hadoop以及Sparkbash./stophs.sh三、基础使用参考链接:https://www.cnblogs.com/dasn/arti
- spark vi基本使用
忧伤火锅麻辣烫
笔记
打开文件与创建文件是Linux的内置命令,以命令的方式来运行。命令格式:vi/路径/文件名注意以下两种情况:1.如果这个文件不存在,此时就是新建文件,编辑器的左下角会提示:newfile2.如果文件已存在,此时就打开这个文件,进入命令模式。把文本内容添加到一个全新的文件的快捷方式:echo1>>1.txt三种模式vi编辑器有三种工作模式,分别为:命令模式,输入模式,底线模式。命令模式:所敲按键编辑
- Spark是什么?可以用来做什么?
Bugkillers
大数据spark大数据分布式
ApacheSpark是一个开源的分布式计算框架,专为处理大规模数据而设计。它最初由加州大学伯克利分校开发,现已成为大数据处理领域的核心工具之一。相比传统的HadoopMapReduce,Spark在速度、易用性和功能多样性上具有显著优势。一、Spark的核心特点速度快:基于内存计算(In-MemoryProcessing),比基于磁盘的MapReduce快10~100倍。支持高效的DAG(有向无
- spark 常见操作命令
小冻梨!!!
spark
配置虚拟机配置即让自己的虚拟机可以联网,和别的虚拟机通讯一、配置vm虚拟机网段。具体设置为:虚拟机左上角点击编辑→虚拟网络编辑器选择VMnet8,要改动两个地方(注意:它会需要管理员权限):1.子网IP改成192.168.10.02.NAT设置→192.168.10.2让所有的VM配置的虚拟机使用NAT时,它们的网段都是一致的。注意:这里的第三个部分的10并不是固定的,我们自己可以约定,但是
- PySpark实现获取S3上Parquet文件的数据结构,并自动在Snowflake里建表和生成对应的建表和导入数据的SQL
weixin_30777913
pythonawssqlspark
PySpark实现S3上解析存储Parquet文件的多个路径,获取其中的数据Schema,再根据这些Schema,参考以下文本,得到创建S3路径Stage的SQL语句和上传数据到Snowflake数据库的SQL语句,同样的Stage路径只需创建一个Stage对象即可,并在S3上保存为SQL,并在Snowflake里创建对应的表,并在S3上存储创建表的SQL语句。要将存储在S3上的Parquet文件
- 37.索引生命周期管理—kibana 索引配置
大勇任卷舒
ELKelasticsearch大数据bigdata
37.1背景引入索引生命周期管理的一个最重要的目的就是对大量时序数据在es读写操作的性能优化如通过sparkstreaming读取Kafka中的日志实时写入es,这些日志高峰期每天10亿+,每分钟接近100w,希望es能够对单分片超过50g或者30天前的索引进行归档,并能够自动删除90天前的索引这个场景可以通过ILM进行策略配置来实现37.2介绍ES索引生命周期管理分为4个阶段:hot、warm、
- 通过spark-redshift工具包读取redshift上的表
stark_summer
sparksparkredshiftparquetapi数据
spark数据源API在spark1.2以后,开始提供插件诗的机制,并与各种结构化数据源整合。spark用户可以读取各种各样数据源的数据,比如Hive表、JSON文件、列式的Parquet表、以及其他表。通过spark包可以获取第三方数据源。而这篇文章主要讨论spark新的数据源,通过spark-redshift包,去访问AmazonRedshift服务。spark-redshift包主要由Dat
- 大数据面试临阵磨枪不知看什么?看这份心理就有底了-大数据常用技术栈常见面试100道题
大模型大数据攻城狮
大数据面试职场和发展面试题数据仓库算法
目录1描述Hadoop的架构和它的主要组件。2MapReduce的工作原理是什么?3什么是YARN,它在Hadoop中扮演什么角色?4Spark和HadoopMapReduce的区别是什么?5如何在Spark中实现数据的持久化?6SparkStreaming的工作原理是什么?7如何优化Spark作业的性能?8描述HBase的架构和它的主要组件。9HBase的读写流程是怎样的?10HBase如何处理
- Spark复习八:简述Spark运行流程以及Spark分区以及简述SparkContext
IT change the world
sparkspark大数据面试hadoopzookeeper
1.简述Spark运行流程:1.构建SparkApplication的运行环境,启动SparkContext2.SparkContext向资源管理器(可以是Standalone,Mesos,Yarm)申请运行Executor资源,并启动StandaloneExecutorbackend3.Executor向SparkContext申请Task4.SparkContext将应用程序分发给Execut
- Spark使用Parqute存储方式有什么好处
冰火同学
Sparkspark
列式存储:压缩效率和查询效率谓词下推存储层:查询数据块生态兼容性高:Spark,hadoop等都兼容
- 初学者如何用 Python 写第一个爬虫?
ADFVBM
面试学习路线阿里巴巴python爬虫开发语言
??欢迎来到我的博客!非常高兴能在这里与您相遇。在这里,您不仅能获得有趣的技术分享,还能感受到轻松愉快的氛围。无论您是编程新手,还是资深开发者,都能在这里找到属于您的知识宝藏,学习和成长。??博客内容包括:Java核心技术与微服务:涵盖Java基础、JVM、并发编程、Redis、Kafka、Spring等,帮助您全面掌握企业级开发技术。大数据技术:涵盖Hadoop(HDFS)、Hive、Spark
- Spark架构都有那些组件
冰火同学
Sparkspark架构大数据
Spark组件架构主要采用主从结构,分别是driver驱动器,Excutor执行器,和clusterManager集群管理器这个三个架构组件其中driver驱动器主要负责spark执行Excutor的任务分配。Excutor执行器猪獒就是负责将被分配到的task任务进行处理clastermanager管理有多钟:第一种的spark自带的的集群管理,叫做standalone。第二种是sparkony
- hive-staging文件问题——DataX同步数据重复
Aldebaran α
Hivesqlhive大数据hdfsspark
1.产生原因1.使用Hue的界面工具执行Hive-sql。Hue会自动保存sql执行结果方便用户能够查看历史执行记录,所以会在相应目录下生成hive-staging文件;2.Hive-sql任务执行过程中出现异常,导致hive-staging文件未删除,未出现异常时,hive会自行删除hive-staging文件;3.使用spark-sqlonyarn跑sql程序生成的hive-staging文件
- 避免Hive和Spark生成HDFS小文件
穷目楼
数据库大数据大数据sparkhivehadoop
HDFS是为大数据设计的分布式文件系统,对大数据做了存储做了针对性的优化,但却不适合存储海量小文件。Hive和spark-sql是两个在常用的大数据计算分析引擎,用户直接以SQL进行大数据操作,底层的数据存储则多由HDFS提供。对小数据表的操作如果没做合适的处理则很容易导致大量的小文件在HDFS上生成,常见的一个情景是数据处理流程只有map过程,而流入map的原始数据数量较多,导致整个数据处理结束
- 机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例
Mostcow
数据分析Python机器学习随机森林回归大数据
机器学习_PySpark-3.0.3随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):任务类型:随机森林回归主要用于回归任务。在回归任务中,算法试图预测一个连续的数值输出,而不是一个离散的类别。输出:随机森林回归的输出是一个连续的数值,表示输入数据的预测结果。算法原理:随机森林回归同样基于决策树,但在回归任务中,每个决策树的
- 强者联盟——Python语言结合Spark框架
博文视点
全栈工程师全栈全栈数据SparkPythonPySpark
引言:Spark由AMPLab实验室开发,其本质是基于内存的快速迭代框架,“迭代”是机器学习最大的特点,因此非常适合做机器学习。得益于在数据科学中强大的表现,Python语言的粉丝遍布天下,如今又遇上强大的分布式内存计算框架Spark,两个领域的强者走到一起,自然能碰出更加强大的火花(Spark可以翻译为火花),因此本文主要讲述了PySpark。本文选自《全栈数据之门》。全栈框架Spark由AMP
- Spark技术系列(三):Spark算子全解析——从基础使用到高阶优化
数据大包哥
#Sparkspark大数据分布式
Spark技术系列(三):Spark算子全解析——从基础使用到高阶优化1.算子核心概念与分类体系1.1算子本质解析延迟执行机制:转换算子构建DAG,行动算子触发Job执行任务并行度:由RDD分区数决定(可通过spark.default.parallelism全局配置)执行位置优化:基于数据本地性的任务调度策略1.2官方分类标准
- 大数据经典技术解析:Hadoop+Spark大数据分析原理与实践
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介大数据时代已经来临。随着互联网、移动互联网、物联网等新兴技术的出现,海量数据开始涌现。而在这些海量数据的基础上进行有效的处理,成为迫切需要解决的问题之一。ApacheHadoop和ApacheSpark是目前主流开源大数据框架。由于其易于部署、高容错性、并行计算能力强、适应数据量大、可编程、社区支持广泛等特点,大大提升了大数据应用的效率和效果。本文通过对Hado
- Spark核心之06:知识点梳理
小技工丨
大数据技术学习SparkSQLspark大数据
spark知识点梳理spark_〇一1、spark是什么spark是针对于大规模数据处理的统一分析引擎,它是基于内存计算框架,计算速度非常之快,但是它仅仅只是涉及到计算,并没有涉及到数据的存储,后期需要使用spark对接外部的数据源,比如hdfs。2、spark四大特性1、速度快spark比mapreduce快的2个主要原因1、基于内存(1)mapreduce任务后期再计算的时候,每一个job的输
- Airflow和PySPARK实现带多组参数和标签的Amazon Redshift数据仓库批量数据导出程序
weixin_30777913
pythonspark云计算
设计一个基于多个带标签SQL模板作为配置文件和多组参数的PySPARK代码程序,实现根据不同的输入参数,用Airflow进行调度,自动批量地将AmazonRedshift数据仓库的数据导出为Parquet、CSV和Excel文件到S3上,标签和多个参数(以“_”分割)为组成导出数据文件名,文件已经存在则覆盖原始文件。PySpark程序需要异常处理,输出带时间戳和每个运行批次和每个导出文件作业运行状
- 入门Apache Spark:基础知识和架构解析
juer_0001
javaspark
介绍ApacheSparkSpark的历史和背景ApacheSpark是一种快速、通用、可扩展的大数据处理引擎,最初由加州大学伯克利分校的AMPLab开发,于2010年首次推出。它最初设计用于支持分布式计算框架MapReduce的交互式查询,但逐渐发展成为一种更通用的数据处理引擎,能够处理数据流、批处理和机器学习等工作负载。Spark的特点和优势Spark是一种快速、通用、可扩展的大数据处理框架,
- Spark核心算子对比:`reduceByKey`与`groupByKey`源码级解析及生产调优指南
数据大包哥
大数据spark分布式
Spark核心算子对比:reduceByKey与groupByKey源码级解析及生产调优指南1.核心机制对比在Spark中,reduceByKey和groupByKey都是对键值对RDD(RDD[(K,V)])进行聚合操作的高阶算子,但两者的底层实现和性能表现截然不同。特性reduceByKeygroupByKeyShuffle前预聚合✅启用(mapSideCombine=true)❌禁用(map
- spark为什么比mapreduce快?
京东云开发者
sparkmapreduce大数据
作者:京东零售吴化斌spark为什么比mapreduce快?首先澄清几个误区:1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,所以shuffle次数不能减少所以总结spark比ma
- Spark 运行问题 java.lang.NoSuchMethodError 解决方案
@飞往你的山
sparkscala
一般情况,出现这种问题是因为scala和spark的版本不匹配,需要重新下载两者相匹配的版本。File-ProjectStructure-Libraies-“+”-java选择spark目录下jars文件夹Maven项目,pom.xml文件中添加Spark依赖,需要联网下载,或者本地库中已经下载好依赖包2.3.3org.apache.sparkspark-core_2.11${spark.vers
- 如何使用Spark Streaming将数据写入HBase
Java资深爱好者
sparkhbase大数据
在SparkStreaming中将数据写入HBase涉及到几个步骤。以下是一个基本的指南,帮助你理解如何使用SparkStreaming将数据写入HBase。1.环境准备HBase:确保HBase集群已经安装并运行。Spark:确保Spark已经安装,并且Spark版本与HBase的Hadoop版本兼容。HBaseConnectorforSpark:你需要使用HBase的SparkConnecto
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc