利用keras框架cnn+ctc_loss识别不定长字符图片

# -*- coding: utf-8 -*-
#keras==2.0.5
#tensorflow==1.1.0

import os,sys,string
import sys
import logging
import multiprocessing
import time
import json
import cv2
import numpy as np
from sklearn.model_selection import train_test_split

import keras
import keras.backend as K
from keras.datasets import mnist
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import *
from keras import backend as K
# from keras.utils.visualize_util import plot
from visual_callbacks import AccLossPlotter
plotter = AccLossPlotter(graphs=['acc', 'loss'], save_graph=True, save_graph_path=sys.path[0])

#识别字符集
char_ocr='0123456789' #string.digits
#定义识别字符串的最大长度
seq_len=8
#识别结果集合个数 0-9
label_count=len(char_ocr)+1

def get_label(filepath):
    # print(str(os.path.split(filepath)[-1]).split('.')[0].split('_')[-1])
    lab=[]
    for num in str(os.path.split(filepath)[-1]).split('.')[0].split('_')[-1]:
        lab.append(int(char_ocr.find(num)))
    if len(lab) < seq_len:
        cur_seq_len = len(lab)
        for i in range(seq_len - cur_seq_len):
            lab.append(label_count) #
    return lab

def gen_image_data(dir=r'data\train', file_list=[]):
    dir_path = dir
    for rt, dirs, files in os.walk(dir_path):  # =pathDir
        for filename in files:
            # print (filename)
            if filename.find('.') >= 0:
                (shotname, extension) = os.path.splitext(filename)
                # print shotname,extension
                if extension == '.tif':  # extension == '.png' or
                    file_list.append(os.path.join('%s\\%s' % (rt, filename)))
                    # print (filename)

    print(len(file_list))
    index = 0
    X = []
    Y = []
    for file in file_list:

        index += 1
        # if index>1000:
        #     break
        # print(file)
        img = cv2.imread(file, 0)
        # print(np.shape(img))
        # cv2.namedWindow("the window")
        # cv2.imshow("the window",img)
        img = cv2.resize(img, (150, 50), interpolation=cv2.INTER_CUBIC)
        img = cv2.transpose(img,(50,150))
        img =cv2.flip(img,1)
        # cv2.namedWindow("the window")
        # cv2.imshow("the window",img)
        # cv2.waitKey()
        img = (255 - img) / 256  # 反色处理
        X.append([img])
        Y.append(get_label(file))
        # print(get_label(file))
        # print(np.shape(X))
        # print(np.shape(X))

    # print(np.shape(X))
    X = np.transpose(X, (0, 2, 3, 1))
    X = np.array(X)
    Y = np.array(Y)
    return X,Y

# the actual loss calc occurs here despite it not being
# an internal Keras loss function

def ctc_lambda_func(args):
    y_pred, labels, input_length, label_length = args
    # the 2 is critical here since the first couple outputs of the RNN
    # tend to be garbage:
    # y_pred = y_pred[:, 2:, :] 测试感觉没影响
    y_pred = y_pred[:, :, :]
    return K.ctc_batch_cost(labels, y_pred, input_length, label_length)

if __name__ == '__main__':
    height=150
    width=50
    input_tensor = Input((height, width, 1))
    x = input_tensor
    for i in range(3):
        x = Convolution2D(32*2**i, (3, 3), activation='relu', padding='same')(x)
        # x = Convolution2D(32*2**i, (3, 3), activation='relu')(x)
        x = MaxPooling2D(pool_size=(2, 2))(x)

    conv_shape = x.get_shape()
    # print(conv_shape)
    x = Reshape(target_shape=(int(conv_shape[1]), int(conv_shape[2] * conv_shape[3])))(x)

    x = Dense(32, activation='relu')(x)

    gru_1 = GRU(32, return_sequences=True, kernel_initializer='he_normal', name='gru1')(x)
    gru_1b = GRU(32, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru1_b')(x)
    gru1_merged = add([gru_1, gru_1b])  ###################

    gru_2 = GRU(32, return_sequences=True, kernel_initializer='he_normal', name='gru2')(gru1_merged)
    gru_2b = GRU(32, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru2_b')(
        gru1_merged)
    x = concatenate([gru_2, gru_2b])  ######################
    x = Dropout(0.25)(x)
    x = Dense(label_count, kernel_initializer='he_normal', activation='softmax')(x)
    base_model = Model(inputs=input_tensor, outputs=x)

    labels = Input(name='the_labels', shape=[seq_len], dtype='float32')
    input_length = Input(name='input_length', shape=[1], dtype='int64')
    label_length = Input(name='label_length', shape=[1], dtype='int64')
    loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([x, labels, input_length, label_length])

    model = Model(inputs=[input_tensor, labels, input_length, label_length], outputs=[loss_out])
    model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer='adadelta')
    model.summary()

    def test(base_model):
        file_list = []
        X, Y = gen_image_data(r'data\test', file_list)
        y_pred = base_model.predict(X)
        shape = y_pred[:, :, :].shape  # 2:
        out = K.get_value(K.ctc_decode(y_pred[:, :, :], input_length=np.ones(shape[0]) * shape[1])[0][0])[:,
              :seq_len]  # 2:
        print()
        error_count=0
        for i in range(len(X)):
            print(file_list[i])
            str_src = str(os.path.split(file_list[i])[-1]).split('.')[0].split('_')[-1]
            print(out[i])
            str_out = ''.join([str(x) for x in out[i] if x!=-1 ])
            print(str_src, str_out)
            if str_src!=str_out:
                error_count+=1
                print('################################',error_count)
            # img = cv2.imread(file_list[i])
            # cv2.imshow('image', img)
            # cv2.waitKey()


    class LossHistory(Callback):
        def on_train_begin(self, logs={}):
            self.losses = []

        def on_epoch_end(self, epoch, logs=None):
            model.save_weights('model_1018.w')
            base_model.save_weights('base_model_1018.w')
            test(base_model)

        def on_batch_end(self, batch, logs={}):
            self.losses.append(logs.get('loss'))


    # checkpointer = ModelCheckpoint(filepath="keras_seq2seq_1018.hdf5", verbose=1, save_best_only=True, )
    history = LossHistory()

    # base_model.load_weights('base_model_1018.w')
    # model.load_weights('model_1018.w')

    X,Y=gen_image_data()
    maxin=4900
    subseq_size = 100
    batch_size=10
    result=model.fit([X[:maxin], Y[:maxin], np.array(np.ones(len(X))*int(conv_shape[1]))[:maxin], np.array(np.ones(len(X))*seq_len)[:maxin]], Y[:maxin],
                     batch_size=20,
                     epochs=1000,
                     callbacks=[history, plotter, EarlyStopping(patience=10)], #checkpointer, history,
                     validation_data=([X[maxin:], Y[maxin:], np.array(np.ones(len(X))*int(conv_shape[1]))[maxin:], np.array(np.ones(len(X))*seq_len)[maxin:]], Y[maxin:]),
                     )

    test(base_model)

    K.clear_session()

你可能感兴趣的:(图像分析与识别,深度学习)