TopK问题

找到最小的K个数

 1. O(N):用快排变形最最最高效解决TopK问题   

class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        if (k == 0 || arr.length == 0) {
            return new int[0];
        }
        // ⚠️注意最后一个参数传入我们要找的下标(第k小的数下标是k-1)
        return quickSearch(arr, 0, arr.length - 1, k - 1);
    }

    private int[] quickSearch(int[] nums, int lo, int hi, int k) {
        // 每快排切分1次,找到排序后下标为j的元素,如果j恰好等于k就返回j以及j左边所有的数;
        int j = partition(nums, lo, hi);
        if (j == k) {
            return Arrays.copyOf(nums, j + 1);
        }
        // 否则根据下标j与k的大小关系来决定继续切分左段还是右段。
        return j > k? quickSearch(nums, lo, j - 1, k): quickSearch(nums, j + 1, hi, k);
    }

    // 快排切分,返回下标j,使得比nums[j]小的数都在j的左边,比nums[j]大的数都在j的右边。
    private int partition(int[] nums, int lo, int hi) {
        int v = nums[lo];
        int i = lo, j = hi + 1;
        while (true) {
            while (++i <= hi && nums[i] < v);
            while (--j >= lo && nums[j] > v);
            if (i >= j) {
                break;
            }
            int t = nums[j];
            nums[j] = nums[i];
            nums[i] = t;
        }
        nums[lo] = nums[j];
        nums[j] = v;
        return j;
    }
}

  2. O(NlogK):大根堆(前K小)/小根堆(前K大)

// 保持堆的大小为K,然后遍历数组中的数字,遍历的时候做如下判断:
// 1. 若目前堆的大小小于K,将当前数字放入堆中。
// 2. 否则判断当前数字与大根堆堆顶元素的大小关系,如果当前数字比大根堆堆顶还大(或等于),这个数就直接跳过;
//    反之如果当前数字比大根堆堆顶小,先poll掉堆顶,再将该数字放入堆中。
class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        if (k == 0 || arr.length == 0) {
            return new int[0];
        }
        // 默认是小根堆,实现大根堆需要重写一下比较器。
        Queue pq = new PriorityQueue<>((v1, v2) -> v2 - v1);
        for (int num: arr) {
            if (pq.size() < k) {
                pq.offer(num);
            } else if (num < pq.peek()) {
                pq.poll();
                pq.offer(num);
            }
        }
        
        // 返回堆中的元素
        int[] res = new int[pq.size()];
        int idx = 0;
        for(int num: pq) {
            res[idx++] = num;
        }
        return res;
    }
}

    3. O(NlogK):二叉搜索树

class Solution {
    public int[] getLeastNumbers(int[] arr, int k) {
        if (k == 0 || arr.length == 0) {
            return new int[0];
        }
        // TreeMap的key是数字, value是该数字的个数。
        // cnt表示当前map总共存了多少个数字。
        TreeMap map = new TreeMap<>();
        int cnt = 0;
        for (int num: arr) {
            // 1. 遍历数组,若当前map中的数字个数小于k,则map中当前数字对应个数+1
            if (cnt < k) {
                map.put(num, map.getOrDefault(num, 0) + 1);
                cnt++;
                continue;
            } 
            // 2. 否则,取出map中最大的Key(即最大的数字), 判断当前数字与map中最大数字的大小关系:
            //    若当前数字比map中最大的数字还大(或等于),就直接忽略;
            //    若当前数字比map中最大的数字小,则将当前数字加入map中,并将map中的最大数字的个数-1。
            Map.Entry entry = map.lastEntry();
            if (entry.getKey() > num) {
                map.put(num, map.getOrDefault(num, 0) + 1);
                if (entry.getValue() == 1) {
                    map.pollLastEntry();
                } else {
                    map.put(entry.getKey(), entry.getValue() - 1);
                }
            }
            
        }

        // 最后返回map中的元素
        int[] res = new int[k];
        int idx = 0;
        for (Map.Entry entry: map.entrySet()) {
            int freq = entry.getValue();
            while (freq-- > 0) {
                res[idx++] = entry.getKey();
            }
        }
        return res;
    }
}

4.使用GAVA包

public int[] getLeastNumbers(int[] arr, int k) {
    if (k == 0 || arr.length == 0) {
        return new int[0];
    }
    // TreeMultiset 中允许有重复元素,所以就不需要用TreeMap了。
    TreeMultiset set = TreeMultiset.create();
    for(int num: arr) {
        // 1. 遍历每个数字,如果set中的数量小于K,则直接将当前数字加入set中。
        if (set.size() < k) {
            set.add(num);
            continue;
        }
        // 2. 否则判断当前数字与set中最大数字的大小关系:
        //    若当前数字大于等于set中的最大数字,则直接跳过该数字;
        //    若当前数字小于set中的最大数字,则将当前数字加入set,并将set中最大数字的个数-1。
        Multiset.Entry lastEntry = set.lastEntry();
        if (num < lastEntry.getElement()) {
            set.remove(lastEntry.getElement(), 1);
            set.add(num);
        }
    }

    // 返回set中的元素
    int[] res = new int[k];
    int idx = 0;
    for(int num: set) {
        res[idx++] = num;
    }
    return res;
}

偷偷抄袭于 Sweetiee 的公众号

你可能感兴趣的:(leetCode,TopK,最大的K个数,最小的K个数)