之前的博客有涉及到linux的input子系统,这里学习记录一下input模块.
input子系统,作为管理输入设备与系统进行交互的中枢,任何的输入设备驱动都要通过input向内核注册其设备,
常用的输入设备也就是鼠标,键盘,触摸屏。
稍微细分一点整个输入体系,就是 硬件驱动层,input核心中转层,事件处理层.层次之间传递都以event事件的形式,这其中input连接上下层,分别提供接口.
之前有分析usbtouchscreen的驱动,也就是硬件驱动部分,这里简单记录一下input核心中转处理 input.c .
撰写不易,转载需注明出处:http://blog.csdn.net/jscese/article/details/42123673
源码位于/kernel/drivers/input/input.c ,模块初始调用口subsys_initcall(input_init),
由kernel启动的时候由kernel_init——>do_basic_setup();——>do_initcalls调用到,这个启动逻辑,后续有机会去学习一下,
这里首先调用到初始函数:
static int __init input_init(void)
{
int err;
err = class_register(&input_class); //注册input class,可在/sys/class下看到对应节点文件
if (err) {
pr_err("unable to register input_dev class\n");
return err;
}
err = input_proc_init(); //proc fs的下的一些初始操作,函数原型在input.c,可查看/proc/bus/input
if (err)
goto fail1;
err = register_chrdev(INPUT_MAJOR, "input", &input_fops); // 注册input字符设备,主节点为INPUT_MAJOR==13,可以去input_fops里看注册函数,注册到/dev/input
if (err) {
pr_err("unable to register char major %d", INPUT_MAJOR);
goto fail2;
}
return 0;
fail2: input_proc_exit();
fail1: class_unregister(&input_class);
return err;
}
可以看下注册方法函数:
static const struct file_operations input_fops = {
.owner = THIS_MODULE,
.open = input_open_file,
.llseek = noop_llseek,
};
这里面关注open file方法即可,后面分析。
input.c中还有很多其它的接口以及全局数据,后面陆续联通,先从设备驱动最先调用到的注册 input_register_device
/**
* input_register_device - register device with input core
* @dev: device to be registered
*
* This function registers device with input core. The device must be
* allocated with input_allocate_device() and all it's capabilities
* set up before registering.
* If function fails the device must be freed with input_free_device().
* Once device has been successfully registered it can be unregistered
* with input_unregister_device(); input_free_device() should not be
* called in this case.
*/
int input_register_device(struct input_dev *dev)
{
static atomic_t input_no = ATOMIC_INIT(0);
//这个原子变量,代表总共注册的input设备,每注册一个加1,因为是静态变量,所以每次调用都不会清零的
struct input_handler *handler;
const char *path;
int error;
__set_bit(EV_SYN, dev->evbit); //EN_SYN 这个是设备都要支持的事件类型,所以要设置
/*
* If delay and period are pre-set by the driver, then autorepeating
* is handled by the driver itself and we don't do it in input.c.
*/
// 这个内核定时器是为了重复按键而设置的
init_timer(&dev->timer);
if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
dev->timer.data = (long) dev;
dev->timer.function = input_repeat_key;
dev->rep[REP_DELAY] = 250;
dev->rep[REP_PERIOD] = 33;
//如果没有定义有关重复按键的相关值,就用内核默认的
}
if (!dev->getkeycode)
dev->getkeycode = input_default_getkeycode;
if (!dev->setkeycode)
dev->setkeycode = input_default_setkeycode;
//以上设置的默认函数由input核心提供
dev_set_name(&dev->dev, "input%ld",
(unsigned long) atomic_inc_return(&input_no) - 1);
//设置input_dev中device的名字,这个名字会在/class/input中出现
error = device_add(&dev->dev);
//将device加入到linux设备模型中去
if (error)
return error;
path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
printk(KERN_INFO "input: %s as %s\n",
dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
kfree(path);
//这个得到路径名称,并打印出来
error = mutex_lock_interruptible(&input_mutex);
if (error) {
device_del(&dev->dev);
return error;
}
list_add_tail(&dev->node, &input_dev_list);
// 将新分配的input设备连接到input_dev_list链表上
list_for_each_entry(handler, &input_handler_list, node)
input_attach_handler(dev, handler);
//遍历input_handler_list链表,配对 input_dev 和 input_handler
//input_attach_handler 这个函数是配对的关键,下面将详细分析
input_wakeup_procfs_readers();
// 和proc文件系统有关,暂时不考虑
mutex_unlock(&input_mutex);
return 0;
}
可以看到前面都是一些初始设置,加入到input.c 的全局input_dev 链表里面,同时下面就行匹配对应handler的时候需要遍历 handler 链表:
static LIST_HEAD(input_dev_list);
static LIST_HEAD(input_handler_list);
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
&pos->member != (head); \ //就是个for循环,跳出条件遍历了一遍,又回到链表头
pos = list_entry(pos->member.next, typeof(*pos), member))
input_attach_handler(dev, handler)则是匹配这个要注册dev的handler:
static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
const struct input_device_id *id;
int error;
id = input_match_device(handler, dev); //返回匹配的id,类型是struct input_device_id
if (!id)
return -ENODEV;
error = handler->connect(handler, dev, id); ////配对成功调用handler的connect函数,这个函数在事件处理器中定义,主要生成一个input_handle结构,并初始化,还生成一个事件处理器相关的设备结构
if (error && error != -ENODEV)
pr_err("failed to attach handler %s to device %s, error: %d\n",
handler->name, kobject_name(&dev->dev.kobj), error);
return error;
}
可以看下匹配 id 的结构:
struct input_device_id {
kernel_ulong_t flags;
__u16 bustype;
__u16 vendor;
__u16 product;
__u16 version;
kernel_ulong_t evbit[INPUT_DEVICE_ID_EV_MAX / BITS_PER_LONG + 1];
kernel_ulong_t keybit[INPUT_DEVICE_ID_KEY_MAX / BITS_PER_LONG + 1];
kernel_ulong_t relbit[INPUT_DEVICE_ID_REL_MAX / BITS_PER_LONG + 1];
kernel_ulong_t absbit[INPUT_DEVICE_ID_ABS_MAX / BITS_PER_LONG + 1];
kernel_ulong_t mscbit[INPUT_DEVICE_ID_MSC_MAX / BITS_PER_LONG + 1];
kernel_ulong_t ledbit[INPUT_DEVICE_ID_LED_MAX / BITS_PER_LONG + 1];
kernel_ulong_t sndbit[INPUT_DEVICE_ID_SND_MAX / BITS_PER_LONG + 1];
kernel_ulong_t ffbit[INPUT_DEVICE_ID_FF_MAX / BITS_PER_LONG + 1];
kernel_ulong_t swbit[INPUT_DEVICE_ID_SW_MAX / BITS_PER_LONG + 1];
kernel_ulong_t driver_info;
};
有两个函数input_match_device 以及 下面的 connect需要了解:
static const struct input_device_id *input_match_device(struct input_handler *handler,
struct input_dev *dev)
{
const struct input_device_id *id;
int i;
for (id = handler->id_table; id->flags || id->driver_info; id++) {
if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) //匹配总线id
if (id->bustype != dev->id.bustype)
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) //匹配生产商id
if (id->vendor != dev->id.vendor)
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) //匹配产品id
if (id->product != dev->id.product)
continue;
if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) //匹配版本
if (id->version != dev->id.version)
continue;
MATCH_BIT(evbit, EV_MAX); //匹配id的evbit和input_dev中evbit的各个位,如果不匹配则continue,数组中下一个设备
MATCH_BIT(keybit, KEY_MAX);
MATCH_BIT(relbit, REL_MAX);
MATCH_BIT(absbit, ABS_MAX);
MATCH_BIT(mscbit, MSC_MAX);
MATCH_BIT(ledbit, LED_MAX);
MATCH_BIT(sndbit, SND_MAX);
MATCH_BIT(ffbit, FF_MAX);
MATCH_BIT(swbit, SW_MAX);
if (!handler->match || handler->match(handler, dev))
return id;
}
return NULL;
}
MATCH_bit 原型:
#define MATCH_BIT(bit, max) \
for (i = 0; i < BITS_TO_LONGS(max); i++) \
if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
break; \
if (i != BITS_TO_LONGS(max)) \
continue;
可以看到这么多步的目的除了初始以及添加input_dev到链表,就是为了去匹配 input_handler_list 中对应的handler ,
匹配的最终是需要比对handler以及input_dev中的 id,其中input_dev 中的id类型为 input_id :
struct input_id {
__u16 bustype;
__u16 vendor;
__u16 product;
__u16 version;
};
在最开始的时候就有提到,整个input输入体系,分三个层次,现在的input核心层做的事就是:
在硬件驱动层调用 input_register_device时 ,往内核注册驱动的同时,根据硬件的相关id去匹配 适用的事件处理层(input_handler)!
这里匹配上之后就会调用对应 input_handler 的connect 函数。
input_dev 变量代表的是硬件设备,前文Linux/Android——输入子系统input_event传递 (二)中有介绍
input_handler 变量代表的是事件处理器
同样在input.h 中定义:
/**
* struct input_handler - implements one of interfaces for input devices
* @private: driver-specific data
* @event: event handler. This method is being called by input core with
* interrupts disabled and dev->event_lock spinlock held and so
* it may not sleep
* @filter: similar to @event; separates normal event handlers from
* "filters".
* @match: called after comparing device's id with handler's id_table
* to perform fine-grained matching between device and handler
* @connect: called when attaching a handler to an input device
* @disconnect: disconnects a handler from input device
* @start: starts handler for given handle. This function is called by
* input core right after connect() method and also when a process
* that "grabbed" a device releases it
* @fops: file operations this driver implements
* @minor: beginning of range of 32 minors for devices this driver
* can provide
* @name: name of the handler, to be shown in /proc/bus/input/handlers
* @id_table: pointer to a table of input_device_ids this driver can
* handle
* @h_list: list of input handles associated with the handler
* @node: for placing the driver onto input_handler_list
*
* Input handlers attach to input devices and create input handles. There
* are likely several handlers attached to any given input device at the
* same time. All of them will get their copy of input event generated by
* the device.
*
* The very same structure is used to implement input filters. Input core
* allows filters to run first and will not pass event to regular handlers
* if any of the filters indicate that the event should be filtered (by
* returning %true from their filter() method).
*
* Note that input core serializes calls to connect() and disconnect()
* methods.
*/
struct input_handler {
void *private;
void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value);
bool (*match)(struct input_handler *handler, struct input_dev *dev);
int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id); //上面就是调用这个函数指针
void (*disconnect)(struct input_handle *handle);
void (*start)(struct input_handle *handle);
const struct file_operations *fops;
int minor;
const char *name;
const struct input_device_id *id_table; //这个就是上面说到的 会跟input_dev中的input_id 比对 id项的
struct list_head h_list;
struct list_head node;
};
这个结构里面暂时只需要理解的:
注册input_dev ,在事件处理数据链表里面匹配上 input_handler ,就会调用其 *connect 函数指针 进行连接,
将input_dev 跟 input_handler 进行绑定, 后续的运作事件的handler处理将会走这个input_handler的 *event !
在上篇input_event 传递中最后调用到event阶段.
这里简单记录到这里,下篇介绍input_handler 的处理机制~