思路:
1. 题目最终可以抽象为:最长不相交路径问题,两条从 s 到 t 的不相交路径的最大长度;
2. 把每个点分成 两点,引弧,容量为 1,费用为 1,特殊的:s, t 容量设置为 2,因为可以重复选择;
3. 对于 i, j 存在路径且 i < j 则 向
4. 求上述网络的最大费用最大流,把费用设置为负数,即可求最小费用最大流。结果 - 2 即是输出结果。
#include
#include
#include
#include
#include
#include
using namespace std;
const int MAXN = 1010;
const int INFS = 0x3FFFFFFF;
struct edge {
int from, to, cap, flow, cost;
edge(int _from, int _to, int _cap, int _flow, int _cost)
: from(_from), to(_to), cap(_cap), flow(_flow), cost(_cost) {}
};
class MCMF {
public:
void initdata(int n) {
this->n = n;
edges.clear();
for (int i = 0; i < n; i++)
G[i].clear();
}
void addedge(int u, int v, int cap, int cost) {
edges.push_back(edge(u, v, cap, 0, cost));
edges.push_back(edge(v, u, 0, 0, -cost));
G[u].push_back(edges.size() - 2);
G[v].push_back(edges.size() - 1);
}
bool SPFA() {
for (int i = 0; i < n; i++)
d[i] = INFS, vis[i] = false;
queue<int> Q;
Q.push(s);
d[s] = 0, vis[s] = true, p[s] = 0, a[s] = INFS;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
vis[u] = false;
for (int i = 0; i < G[u].size(); i++) {
edge& e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if (!vis[e.to]) { vis[e.to] = true; Q.push(e.to); }
}
}
}
return d[t] != INFS;
}
void augment(int& flow, int& cost) {
flow += a[t];
cost += a[t] * d[t];
int u = t;
while (u != s) {
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
}
int mincost(int s, int t) {
this->s = s, this->t = t;
int flow = 0, cost = 0;
while (SPFA()) {
augment(flow, cost);
}
return cost;
}
bool isvalid(int delta) {
if (edges[G[s][0]].flow == 2)
return true;
return false;
}
void getpath(int x, int delta, vector<int>& v) {
for (int i = 0; i < G[x].size(); i++) {
edge& e = edges[G[x][i]];
if (e.flow == 1 && !vis[e.to]) {
vis[e.to] = true;
v.push_back(e.to);
getpath(e.to + delta, delta, v);
break;
}
}
}
void getans(int delta, vector<int>& v1, vector<int>& v2) {
memset(vis, false, sizeof(vis));
v1.push_back(s);
v2.push_back(s);
getpath(s + delta, delta, v1);
getpath(s + delta, delta, v2);
}
private:
vector<edge> edges;
vector<int> G[MAXN];
int n, s, t, d[MAXN], p[MAXN], a[MAXN];
bool vis[MAXN];
};
MCMF mcmf;
string city[MAXN];
map<string, int> my;
int main() {
int n, v;
cin >> n >> v;
int s = 1, t = n + n;
mcmf.initdata(t + 1);
for (int i = 1; i <= n; i++) {
cin >> city[i];
my[city[i]] = i;
if (i == 1 || i == n)
mcmf.addedge(i, i+n, 2, -1);
else
mcmf.addedge(i, i+n, 1, -1);
}
for (int i = 0; i < v; i++) {
string a, b;
cin >> a >> b;
int k1 = min(my[a], my[b]);
int k2 = max(my[a], my[b]);
if (k1 == 1 && k2 == n)
mcmf.addedge(k1+n, k2, 2, 0);
else
mcmf.addedge(k1+n, k2, 1, 0);
}
int cost = mcmf.mincost(s, t);
if (mcmf.isvalid(n)) {
cost = -cost-2;
cout << cost << endl;
vector<int> v1;
vector<int> v2;
mcmf.getans(n, v1, v2);
for (int i = 0; i < v1.size(); i++)
cout << city[v1[i]] << endl;
for (int i = v2.size() - 1; i >= 0; i--)
cout << city[v2[i]] << endl;
} else {
cout << "No Solution!" << endl;
}
return 0;
}