- T型槽铸铁平台类型:按材质与结构分类
A13785751790
材质
T型槽铸铁平台作为工业制造领域的基础装备,其材质与结构特性直接影响着机械加工、检测装配等环节的精度与效率。根据铸造材料、内部构造及功能差异,T型槽铸铁平台可形成系统的分类体系,以下从材质与结构两个维度展开详细解析。一、材质分类:铸铁性能决定平台适用场景1.灰铸铁(HT系列)平台灰铸铁是T型槽平台传统的材质,其石墨呈片状分布,赋予材料良好的减震性和耐磨性。HT200材质平台广泛应用于中小型机械加工车
- 6款专业漏斗图工具,提升你的分析效率
Designseek满血版
信息可视化人工智能
漏斗图,这一以漏斗形状展示数据逐步减少情况的可视化工具,在日常数据分析中扮演着重要角色。它通过直观的宽度变化,展现了从一阶段到另一阶段数据的流失率,从而清晰地揭示了不同阶段的数据转换效果。通常,漏斗图自上而下排列,顶部代表初始数据,而随着向下的进展,数据逐渐减少,体现了各阶段的流转情况。在数据分析和商业汇报中,漏斗图因其直观展示流程转化率的特性,成为数据可视化的核心工具之一。无论是销售漏斗、用户行
- 2025最新盘点:9款高效韦恩图工具推荐
Designseek满血版
人工智能图论
在数据分析、逻辑推理以及众多学术研究领域,韦恩图都扮演着极为关键的角色。它以直观的圆形或椭圆形重叠区域,清晰地展现出不同集合之间的关系,无论是集合间的交集、并集还是补集,都能一目了然地呈现出来。无论是学生在学习数学、逻辑学课程时梳理知识点,还是专业人士在进行市场调研、项目规划时分析数据,亦或是科研人员在撰写论文、展示研究成果时阐述理论框架,一款好用的韦恩图绘制工具都显得至关重要。今天,就让我为大家
- 如何在YashanDB数据库中实现自动化数据处理
数据库
在现代信息系统中,数据库技术广泛应用于数据的存储、管理及分析,成为关键的基础设施。自动化数据处理作为提升系统效率和降低运维成本的重要手段,面临性能瓶颈、数据一致性及高可用性等挑战。YashanDB作为一款具备高性能、多场景支持的数据库系统,提供了丰富的架构和功能支持,有助于实现复杂业务的自动化数据处理。本文针对YashanDB在自动化数据处理中的应用,展开详细技术分析,旨在为数据库管理员、开发人员
- 如何最大化YashanDB数据库的存储性能
数据库
在数据库技术领域,存储性能不仅对数据的读写速度有直接影响,同时也关系到整个系统的效率和穷尽的业务能力。数据库管理员和系统架构师常面临着性能瓶颈、I/O瓶颈等问题,并需要通过优化存储结构、合理设计索引、选择合适的部署架构等手段来提升存储性能。本文将详细解析YashanDB数据库的存储性能优化,包括存储管理、数据结构选择、并行处理等多方面的技术原理和实践要点。存储架构优化部署架构选择YashanDB支
- AI 浪潮下的锚与帆:工程师文化的变与不变 | 架构师夜生活
工程师文化
目录:一、那些让程序员焦虑的"假消息"二、我们理解的工程师文化三、AI到底改变了什么四、程序员需要学什么新技能五、80后程序员vs 00后程序员六、最好的时代永远在前方引言公司食堂里,一个产品经理和一个程序员正在讨论一个让行业都焦虑的话题:"AI来了,你们程序员还有什么用?我直接对着机器说需求,它就能给我做出来,我还要你干嘛?你还要给我排期!"产品经理显得有些得意。"你对它说的话它听得懂吗?它生成
- 基于Linux下的vscode c/c++开发环境搭建详细教程
墨小傲
linuxvscodec语言
vscode是文本编辑而非集成开发环境,需要经过配置才能在其上编译执行代码。本教程将具体详解在linux上配置VisualStudioCode使用GCCC++编译器(g++)和GDB调试器的方法(GCC是GNU编译器集合,GDB则是GNU调试器)。配置vscode后,将通过在VSCode中编译和调试一个简单的C++程序告知您具体该如何操作。一、先决条件安装VisualStudioCode.安装C+
- 量子计算+AI芯片:光子计算如何重构神经网络硬件生态
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站量子计算+AI芯片:光子计算如何重构神经网络硬件生态——2025年超异构计算架构下的万亿参数模型训练革命产业拐点:英伟达BlackwellUltra发布光互连版GPU,IBM量子处理器突破512比特,光子计算商用成本降至$5/TOPS实测突破:Llama3-405B在光子-量子混合集群训练能耗下
- 【机器学习笔记 Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
- OpenCV 人脸分析------面部关键点检测类cv::face::FacemarkLBF
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述使用LocalBinaryFeatures(LBF)算法进行面部关键点检测(faciallandmarkdetection)。该算法通过级联回归树预测人脸的68个关键点,具有较高的精度和速度。公共成员函数staticPtrcreate(constParams&pa
- Aurora中插入伪代码的字体设置
中文:宋体英文:TimesNewRoman公式:LatinModernMath,跟包newtxmath有关word里面插入对象-->选择AuroraEquation-->Properties-->Packages,复制以下代码:%!TEXprogram=xelatex%强制使用XeLaTeX引擎\documentclass[a4paper]{article}%\usepackage{mathptm
- 蓝桥杯2023国赛-01游戏
weixin_66009678
蓝桥杯游戏深度优先
本题的dfs还是比较复杂的,需要兼顾的条件比较多。这一题是我看了其他人的题才写出来的,菜菜捏,哈哈哈哈哈!!!然后这一题如何确保行之前不相同,是通过二进制来的,具体的在代码中给出了详解。直接上代码://https://www.lanqiao.cn/problems/17100/learning/?page=1&first_category_id=1&sort=students_count&tags
- Kafka 消费者组再平衡优化实践指南
一、Kafkarebalance原理与影响原理消费者通过subscribe(topics)向协调器(GroupCoordinator)注册组成员。协调器根据partition.assignment.strategy(默认StickyAssignor)自动分配各消费者的分区列表。每次成员加入/离开,都会经历:REVOKE:撤销旧的分区分配ASSIGN:重新分配所有分区期间所有消费者的poll()会被
- springboot3.x中集成springdoc-openapi
恋上钢琴的虫
springspringbootjava
springdoc-openapi简介springdoc-openapijava库有助于使用springboot项目自动生成API文档。之前项目组一直用的Swagger库,一方面官方一直不更新,另一方面在SpringBoot升级到3.0.x之后SpringFox也是无法继续支持Swagger了,对此官方给出的建议是用另一种接口文档解决方案SpringDoc1、在pom.xml中引入SpringDo
- Tuning Language Models by Proxy
樱花的浪漫
对抗生成网络与动作识别强化学习因果推断大模型与智能体人工智能机器学习深度学习自然语言处理计算机视觉神经网络
TuningLanguageModelsbyProxyhttps://arxiv.org/html/2401.08565v41.概述尽管大型预训练语言模型的通用能力越来越强,但它们仍然可以从额外的微调中受益,以更好地实现所需的行为。例如,它们通常被微调以遵循指令(Ouyang等人,2022年)、特定的兴趣领域(Gururangan等人,2020年)或特定任务(Raffel等人,2020年)。然而,
- 2024-2025 贡献的开源项目总结
dotNET跨平台
开源
盘点2024-2025贡献的开源项目总结Intro借着统计贡献的时候盘点一下自己过去一年对别的开源项目合并的pullrequest,统计时间:从2024-04-01到2025-03-31,按PR合并的时间算PR总计:184,去掉自己仓库的PR对其他开源项目的PR总计:100,仓库数量:51,详细列表如下AllPRcontributions0xced/ChiselupdateMongoDbdrive
- 【大厂面试题】千万级大表如何快速删除大量数据
CBeann
【面试题】【架构&案例】【MySQL】java开源springjvmmysql大厂面试题
-作者简介:大厂高级Java开发工程师-称号:CSDN博客专家✨、阿里云博客专家-公众号:云服务小管家。免费的阿里云服务器☁和云环境直接使用-生活:专注于后端技术分享迷茫时可来瞅瞅码农轨迹♂️-服务:提供模拟面试和简历辅导,提供生产项目。内推可私信✉-卷卷群:可以和大家一起学习,一起进步-如果感觉博主的文章还不错的话,请三连支持一下博主哦背景最近在做一个项目,除了验证功能,还需要验证性能,所以前
- 【面试题】为什么kafka的吞吐量这么高
oraen
面试系列kafka分布式
我们总结一下为什么kafka的吞吐量高核心:顺序写+零拷贝+批处理一数据模型简单+顺序读写磁盘1kafka的数据存储本质上使用的是Append-only日志模型,数据写入和读取是顺序的,不需要复杂索引或随机写,大大简化了写路径,2消息以顺序追加方式写入磁盘,避免了随机写,而且顺序写入能够更高效地配合操作系统的页缓存,进一步提升写的性能。3消息的消费也是顺序读取的,顺序读取硬盘数据再配合内存映射大大
- 补充:解决Ubuntu20.04.4安装KRS时无法下载github代码问题
mamak426
kv260github自动驾驶人工智能
官方代码下载自github(gitlab),如何访问外网的问题这里可以合法合规解决,就是先把github的代码导入gitee,再采取同步的方式解决:原代码段如下:仔细看代码内容,链接路径全为github。catkrs_rolling.reposrepositories:ros2/ament_lint:type:giturl:https://github.com/ament/ament_lintve
- 开源语音分离工具大比拼:人声 VS 背景音乐 ⚔️ - 获取干净训练语音 (数据截至 2025年4月17日)!!!
小丁学Java
python人工智能
开源语音分离工具大比拼:人声VS背景音乐⚔️-获取干净训练语音(数据截至2025年4月17日)在音频处理,特别是机器学习训练数据的准备中,获取纯净的人声(去除背景音乐或噪声)是一个常见的痛点。幸运的是,开源社区提供了许多强大的工具来帮助我们完成这项任务!本文将盘点一系列GitHub上的开源语音分离项目,重点关注那些能有效分离“人物语音”和“背景音乐”的工具,并根据GitHub星标⭐(反映社区关注度
- Javascript基础内容回顾—变量提升、事件循环和闭包等内容
GISer_Jinger
javascript前端
以下是前端面试中JavaScript基础易错问题的详解,结合常见考点和易混淆概念进行解析:⚠️一、变量作用域与提升varvslet/const◦变量提升:var声明的变量会提升到作用域顶部(值为undefined),而let/const存在暂时性死区(声明前访问报错)。◦循环陷阱:for(vari=0;iconsole.log(i));//输出3,3,3(共享同一作用域)}for(leti=0;i
- 巨兽的阴影:大型语言模型的挑战与伦理深渊
田园Coder
人工智能科普人工智能科普
当GPT-4这样的庞然大物能够流畅对话、撰写诗歌、编写代码、解析图像,甚至在某些测试中媲美人类专家时,大型语言模型(LLM)仿佛成为了无所不能的“智能神谕”。然而,在这令人目眩的成就之下,潜藏着复杂而严峻的挑战与伦理困境,如同光芒万丈的科技巨兽脚下那片难以忽视的深邃阴影。这些挑战并非技术进步的偶然副作用,而是深植于LLM的运作本质、训练数据来源以及其与社会交互的复杂性之中。它们警示我们,在追逐能力
- AI+Web3:从自动化工具到自主经济体的范式革命
Loving_enjoy
计算机学科论文创新点迁移学习人工智能机器学习
>想象你的AI助手不仅能回答问题,还能自主管理你的加密资产、参与DAO治理、在预测市场博弈,甚至为你创造持续收益——欢迎来到AI与Web3融合的新世界。传统互联网(Web2)的AI困在中心化的牢笼中:数据被垄断在科技巨头手中,算法决策如同黑箱,用户沦为被动的数据奶牛。**Web3与AI的碰撞正在打破这一枷锁**,催生出去中心化的自主智能体(AIAgent),它们拥有数字身份、加密钱包和经济决策权,
- 为什么让AI洗碗比写诗难百倍?清华教授揭秘具身智能鸿沟
Loving_enjoy
计算机学科论文创新点机器学习人工智能facebook课程设计
>**人类小脑数亿年进化出的运动智慧,成了AI最难破解的密码**2025年3月,一位网友困惑地发问:“我想让人工智能替我洗碗做饭洗衣服,没想到现在的AI反而在画画、写歌、搞创作……”对此,全国政协委员、中国科学院自动化研究所研究员赵晓光一针见血地指出:**“大模型没有创新能力,想让AI干体力活还要靠具身智能的发展。”**这个看似矛盾的现象背后,隐藏着人工智能发展进程中一个惊人的认知盲区。清华大学心
- 【论文阅读】Dynamic Few-Shot Visual Learning without Forgetting
Bosenya12
论文阅读
系统概述如下:(a)一个基于卷积神经网络(ConvNet)的识别模型,该模型包含特征提取器和分类器;(b)一个少样本分类权重生成器。这两个组件都是在一组基础类别上训练的,我们为这些类别准备了大量训练数据。在测试阶段,权重生成器会接收少量新类别的训练数据以及基础类别的分类权重向量(分类器框内的绿色矩形),并为新类别生成相应的分类权重向量(分类器框内的蓝色矩形)。这样,卷积神经网络就能同时识别基础类别
- 【资源分享】外文文献检索网站
Bosenya12
资源文献检索
外文文献检索网站Sci-Hub网址链接:https://www.sci-hub.st/Sci-hub是一个可以无限搜索、查阅和下载大量优质论文的数据库。其优点在于可以免费下载论文文献。ScienceDirect网址链接:http://www.sciencedirect.com/ScienceDirect是一个拥有2500多本期刊以及近20000篇文章的科学数据库,里面的文献可以免费检索阅读。Pro
- 扩散模型中的 Transformer:图像生成及其延展应用询问 ChatGPT
DeepSeek大模型官方教程
transformerchatgpt深度学习自然语言处理人工智能ai大模型学习
扩散模型近年来在生成逼真但合成的连续媒体内容方面引起了广泛关注。本次演讲将介绍Transformer在图像生成的扩散模型中的应用,并进一步探讨其更广泛的前景。我们首先简要介绍扩散模型的基础知识以及它们的训练方式,从而建立基本背景。接着,我们讲解曾是扩散模型事实标准的基于UNet的网络架构,这将帮助我们理解引入Transformer架构并推动其发展的动因。随后,我们将深入探讨构成基础架构的核心模块,
- AI+小程序新范式:智能推荐、语音交互的场景落地全攻略
AI+小程序新范式:智能推荐、语音交互的场景落地全攻略内容摘要在AI技术席卷全球的今天,小程序与AI的结合已不再是“锦上添花”,而是企业生存的“必答题”。当用户打开一个电商小程序,系统竟能提前预判其需求;当用户对着智能音箱说一句指令,小程序即刻完成从订票到推荐餐厅的“一条龙”服务——这些场景正在成为现实。但问题随之而来:智能推荐如何避免“精准骚扰”?语音交互如何突破方言和噪音的桎梏?技术背后隐藏着
- STM实战开发(4):STM32控制蜂鸣器发声的开发博客
嵌入式开发项目
2025年嵌入式开发stm32嵌入式硬件单片机物联网
1.前言随着智能硬件的发展,蜂鸣器成为了很多嵌入式系统中的一个常见输出装置。无论是作为警报声,还是作为提示音,蜂鸣器都可以为用户提供直观的声音反馈。在嵌入式开发中,STM32由于其强大的性能和灵活的外设配置,成为了实现蜂鸣器控制的理想平台。本文将以STM32为开发平台,详细讲解如何控制蜂鸣器发声。通过本篇博客,你将能够了解蜂鸣器的工作原理、如何连接蜂鸣器到STM32单片机,以及如何编写控制蜂鸣器的
- PDF 的开发工具库: Adobe PDF Library
纸上笔下
AcroBatpdfadobeSDKAPI标准签名接口
AdobePDFLibrary是Adobe公司提供的一个软件开发工具包(SDK),它本质上是AdobeAcrobat的"无界面"版本,但功能更为强大。作为PDF处理领域的专业解决方案,它为开发者提供了创建、操作和管理PDF文档的全面能力。1many1many1manyAdobePDFLibrary+createPDF()+manipulatePDF()+extractData()+renderPD
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理