文接上一篇。上篇讲到netty暴露一个端口出来,acceptor, handler, pipeline, eventloop 都已准备好。但是并没体现其如何处理接入新的网络请求,今天我们就一起来看看吧。
1. eventloop主循环
上篇讲到,netty启动起来之后,就会有很多个eventloop线程会一直在循环工作(server通用特性),比如进行select或者执行task. 我们再来回顾 NioEventLoop 的实现方式吧!
我们先看看下 NioEventLoop 的类图吧:
看起来非常复杂,不管它。它核心方法自然是 run();
// io.netty.channel.nio.NioEventLoop#run @Override protected void run() { // 一个死循环检测任务, 这就 eventloop 的大杀器哦 for (;;) { try { switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) { case SelectStrategy.CONTINUE: continue; // 有任务时执行任务, 否则阻塞等待网络事件, 或被唤醒 case SelectStrategy.SELECT: // select.select(), 带超时限制 select(wakenUp.getAndSet(false)); // 'wakenUp.compareAndSet(false, true)' is always evaluated // before calling 'selector.wakeup()' to reduce the wake-up // overhead. (Selector.wakeup() is an expensive operation.) // // However, there is a race condition in this approach. // The race condition is triggered when 'wakenUp' is set to // true too early. // // 'wakenUp' is set to true too early if: // 1) Selector is waken up between 'wakenUp.set(false)' and // 'selector.select(...)'. (BAD) // 2) Selector is waken up between 'selector.select(...)' and // 'if (wakenUp.get()) { ... }'. (OK) // // In the first case, 'wakenUp' is set to true and the // following 'selector.select(...)' will wake up immediately. // Until 'wakenUp' is set to false again in the next round, // 'wakenUp.compareAndSet(false, true)' will fail, and therefore // any attempt to wake up the Selector will fail, too, causing // the following 'selector.select(...)' call to block // unnecessarily. // // To fix this problem, we wake up the selector again if wakenUp // is true immediately after selector.select(...). // It is inefficient in that it wakes up the selector for both // the first case (BAD - wake-up required) and the second case // (OK - no wake-up required). if (wakenUp.get()) { selector.wakeup(); } // fall through default: } cancelledKeys = 0; needsToSelectAgain = false; // ioRatio 为io操作的占比, 和运行任务相比, 默认为 50:50 final int ioRatio = this.ioRatio; if (ioRatio == 100) { try { // step1. 运行io操作 processSelectedKeys(); } finally { // Ensure we always run tasks. // step2. 运行task任务 runAllTasks(); } } else { final long ioStartTime = System.nanoTime(); try { processSelectedKeys(); } finally { // Ensure we always run tasks. final long ioTime = System.nanoTime() - ioStartTime; // 运行任务的最长时间 runAllTasks(ioTime * (100 - ioRatio) / ioRatio); } } } catch (Throwable t) { handleLoopException(t); } // Always handle shutdown even if the loop processing threw an exception. try { if (isShuttingDown()) { closeAll(); if (confirmShutdown()) { return; } } } catch (Throwable t) { handleLoopException(t); } } } // select, 事件循环的依据 private void select(boolean oldWakenUp) throws IOException { Selector selector = this.selector; try { int selectCnt = 0; long currentTimeNanos = System.nanoTime(); // 带超时限制, 默认最大超时1s, 但当有延时任务处理时, 以它为标准 long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos); for (;;) { long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L; if (timeoutMillis <= 0) { // 超时则立即返回 if (selectCnt == 0) { selector.selectNow(); selectCnt = 1; } break; } // If a task was submitted when wakenUp value was true, the task didn't get a chance to call // Selector#wakeup. So we need to check task queue again before executing select operation. // If we don't, the task might be pended until select operation was timed out. // It might be pended until idle timeout if IdleStateHandler existed in pipeline. if (hasTasks() && wakenUp.compareAndSet(false, true)) { selector.selectNow(); selectCnt = 1; break; } int selectedKeys = selector.select(timeoutMillis); selectCnt ++; if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) { // - Selected something, // - waken up by user, or // - the task queue has a pending task. // - a scheduled task is ready for processing break; } if (Thread.interrupted()) { // Thread was interrupted so reset selected keys and break so we not run into a busy loop. // As this is most likely a bug in the handler of the user or it's client library we will // also log it. // // See https://github.com/netty/netty/issues/2426 if (logger.isDebugEnabled()) { logger.debug("Selector.select() returned prematurely because " + "Thread.currentThread().interrupt() was called. Use " + "NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop."); } selectCnt = 1; break; } long time = System.nanoTime(); if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) { // timeoutMillis elapsed without anything selected. selectCnt = 1; } else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 && selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) { // The selector returned prematurely many times in a row. // Rebuild the selector to work around the problem. logger.warn( "Selector.select() returned prematurely {} times in a row; rebuilding Selector {}.", selectCnt, selector); rebuildSelector(); selector = this.selector; // Select again to populate selectedKeys. selector.selectNow(); selectCnt = 1; break; } currentTimeNanos = time; } if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) { if (logger.isDebugEnabled()) { logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.", selectCnt - 1, selector); } } } catch (CancelledKeyException e) { if (logger.isDebugEnabled()) { logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?", selector, e); } // Harmless exception - log anyway } }
大体来说就是:eventloop是一个一直在运行的线程,它会不停地检测是否发生了网络事件或者被提交上来了新任务,如果有那么就会去执行这些任务。
在处理io事件和task时,为防止调度的饥饿问题,它设置了一个ioRatio来避免发生。即如果io事件占用了ioTime时间,那么task也应该占用相应剩下比例的时间,以保持公平性。
在实现上,发现网络io事件是通过 selector.select()的,而发现task任务是通过 hasTasks()来实现检测的。每检测一次,一般不超过1s的休眠时间,以免在特殊情况下发生意外而导致系统假死。
2. acceptor 运行io操作
io操作主要就是监控一些网络事件,比如新连接请求,请请求,写请求,关闭请求等。它是一个网络应用的非常核心的功能之一。从eventloop的核心循环中,我们看到其 processSelectedKeys() 就做网络io事件处理的。
// io.netty.channel.nio.NioEventLoop#processSelectedKeys private void processSelectedKeys() { // selectedKeys 为前面进行bind()时初始化掉的,所以不会为空 if (selectedKeys != null) { processSelectedKeysOptimized(); } else { processSelectedKeysPlain(selector.selectedKeys()); } } private void processSelectedKeysOptimized() { // 当无网络事件发生时,selectedKeys.size=0, 不会发生处理行为 for (int i = 0; i < selectedKeys.size; ++i) { // 当有网络事件发生时,selectedKeys 为各就绪事件 final SelectionKey k = selectedKeys.keys[i]; // null out entry in the array to allow to have it GC'ed once the Channel close // See https://github.com/netty/netty/issues/2363 selectedKeys.keys[i] = null; final Object a = k.attachment(); if (a instanceof AbstractNioChannel) { // 转换成相应的channel, 调用 processSelectedKey(k, (AbstractNioChannel) a); } else { @SuppressWarnings("unchecked") NioTasktask = (NioTask ) a; processSelectedKey(k, task); } if (needsToSelectAgain) { // null out entries in the array to allow to have it GC'ed once the Channel close // See https://github.com/netty/netty/issues/2363 selectedKeys.reset(i + 1); selectAgain(); i = -1; } } } // 处理具体的socket private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) { final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe(); // if (!k.isValid()) { final EventLoop eventLoop; try { eventLoop = ch.eventLoop(); } catch (Throwable ignored) { // If the channel implementation throws an exception because there is no event loop, we ignore this // because we are only trying to determine if ch is registered to this event loop and thus has authority // to close ch. return; } // Only close ch if ch is still registered to this EventLoop. ch could have deregistered from the event loop // and thus the SelectionKey could be cancelled as part of the deregistration process, but the channel is // still healthy and should not be closed. // See https://github.com/netty/netty/issues/5125 if (eventLoop != this || eventLoop == null) { return; } // close the channel if the key is not valid anymore unsafe.close(unsafe.voidPromise()); return; } try { // 取出就绪事件类型进行判断 int readyOps = k.readyOps(); // We first need to call finishConnect() before try to trigger a read(...) or write(...) as otherwise // the NIO JDK channel implementation may throw a NotYetConnectedException. // 如果是连接事件,则先进行连接操作,触发 finishConnect() 事件链 if ((readyOps & SelectionKey.OP_CONNECT) != 0) { // remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking // See https://github.com/netty/netty/issues/924 int ops = k.interestOps(); ops &= ~SelectionKey.OP_CONNECT; k.interestOps(ops); unsafe.finishConnect(); } // Process OP_WRITE first as we may be able to write some queued buffers and so free memory. // 如果是写事件,则强制channel写数据 if ((readyOps & SelectionKey.OP_WRITE) != 0) { // Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write ch.unsafe().forceFlush(); } // Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead // to a spin loop if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) { // 读取数据, OP_READ, OP_ACCEPT 会进入到此处,事件处理从此开始 unsafe.read(); } } catch (CancelledKeyException ignored) { unsafe.close(unsafe.voidPromise()); } } // io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read @Override public void read() { // 此处断言,只有io线程本身才可以进行read()操作,如果被其他线程执行,那就是有问题的 assert eventLoop().inEventLoop(); // 取出config, Pipeline... final ChannelConfig config = config(); final ChannelPipeline pipeline = pipeline(); // 调用 allocator 分配接收内存, io.netty.channel.AdaptiveRecvByteBufAllocator.HandleImpl // 并重置读取状态 final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle(); allocHandle.reset(config); boolean closed = false; Throwable exception = null; try { try { do { // 1. 初步读取数据 int localRead = doReadMessages(readBuf); if (localRead == 0) { break; } if (localRead < 0) { closed = true; break; } allocHandle.incMessagesRead(localRead); // 通过allocHandle判定是否已读取数据完成 } while (allocHandle.continueReading()); } catch (Throwable t) { exception = t; } int size = readBuf.size(); for (int i = 0; i < size; i ++) { readPending = false; // 2. 事件通知: fireChannelRead(), accept() 之后的channel作为数据源传入pipeline中 // 此 pipeline 结构为 head -> ServerBootstrapAcceptor -> tail pipeline.fireChannelRead(readBuf.get(i)); } readBuf.clear(); allocHandle.readComplete(); // 事件通知: channelReadComplete() // 注意,此时read操作极有可能还未完成,而此进进行 complete 操作是否为时过早呢? // 是的,但是不用担心,eventLoop可以保证先提交的事件会先执行,所以这里就只管放心提交吧 // 这也是accept不会阻塞eventLoop的原因,即虽然大家同在 eventLoop 上,但是accept很快就返回了 pipeline.fireChannelReadComplete(); if (exception != null) { closed = closeOnReadError(exception); pipeline.fireExceptionCaught(exception); } if (closed) { inputShutdown = true; if (isOpen()) { close(voidPromise()); } } } finally { // Check if there is a readPending which was not processed yet. // This could be for two reasons: // * The user called Channel.read() or ChannelHandlerContext.read() in channelRead(...) method // * The user called Channel.read() or ChannelHandlerContext.read() in channelReadComplete(...) method // // See https://github.com/netty/netty/issues/2254 if (!readPending && !config.isAutoRead()) { removeReadOp(); } } } }
以上是处理一条io事件的大体流程:
1. 调用 AdaptiveRecvByteBufAllocator 分配一个新的 ByteBuf, 用于接收新数据;
2. 调用 doReadMessages() 转到 accept() 接收socket进来, 存入 ByteBuf 备用;
3. 对接入的socket, 调用pipeline.fireChannelRead(), 处理读过程;
4. 调用pipeline.fireChannelReadComplete() 方法,触发read完成事件;
5. 异常处理;
注意,当前运行的线程是在bossGroup中,它的pipeline是相对固定的,即只有head -> acceptor -> tail, 而我们的handler是在childGroup中的,所以我们只能再等等咯。
下面我们就来细分解下这几个步骤!
2.1 acceptor 接入socket
在调用AdaptiveRecvByteBufAllocator, 分配一个新的 allocHandle 之后,就进行socket的接入,实际上就是调用 serverSocketChannel.accept() 方法, 初步读取数据。来看下!
// 处理预备 allocHandle, 以便进行判定是否数据读取完成 // io.netty.channel.AbstractChannel.AbstractUnsafe#recvBufAllocHandle @Override public RecvByteBufAllocator.Handle recvBufAllocHandle() { if (recvHandle == null) { recvHandle = config().getRecvByteBufAllocator().newHandle(); } return recvHandle; } // 重置读取状态 // io.netty.channel.DefaultMaxMessagesRecvByteBufAllocator.MaxMessageHandle#reset @Override public void reset(ChannelConfig config) { this.config = config; maxMessagePerRead = maxMessagesPerRead(); totalMessages = totalBytesRead = 0; } // 通过allocHandle判定是否已读取数据完成 // io.netty.channel.DefaultMaxMessagesRecvByteBufAllocator.MaxMessageHandle#continueReading() @Override public boolean continueReading() { return continueReading(defaultMaybeMoreSupplier); } @Override public boolean continueReading(UncheckedBooleanSupplier maybeMoreDataSupplier) { return config.isAutoRead() && (!respectMaybeMoreData || maybeMoreDataSupplier.get()) && // accept 时, totalMessages = 1, 此条件必成立。 // 但totalBytesRead=0, 所以必然返回false, 还需要继续读数据 totalMessages < maxMessagePerRead && totalBytesRead > 0; } // accept 新的socket @Override protected int doReadMessages(List
将新接入的socket封装成 NioSocketChannel 后, 添加到 readBuf 中, 进入下一步.
2.2 read 事件传播
socket 接入完成后, 会依次读取数据. (所以, 前面会同时接入多个 socket ??) pipeline 机制正式上场. 此时pipeline中有head,acceptor,tail, 但只有acceptor会真正处理数据.
// channelRead() 事件通知, 从 head 开始, 由 acceptor 处理 // io.netty.channel.DefaultChannelPipeline#fireChannelRead @Override public final ChannelPipeline fireChannelRead(Object msg) { // 将pipeline中的head节点作为起始channelHandler传入,处理消息 // head 实现: efaultChannelPipeline.HeadContext, 它既能处理 inbound, 也能处理 outbound 数据。 // 即其实现了 ChannelOutboundHandler, ChannelInboundHandler AbstractChannelHandlerContext.invokeChannelRead(head, msg); return this; } // io.netty.channel.AbstractChannelHandlerContext#invokeChannelRead(io.netty.channel.AbstractChannelHandlerContext, java.lang.Object) static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) { // 此处也是一个扩展点, 如果该channel实现了 ReferenceCounted, 则创建一个新的 ReferenceCounted msg 包装, 并调用其touch 方法 final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next); EventExecutor executor = next.executor(); if (executor.inEventLoop()) { // 当前事件循环发现的数据,直接走此处 next.invokeChannelRead(m); } else { executor.execute(new Runnable() { @Override public void run() { next.invokeChannelRead(m); } }); } } // io.netty.channel.AbstractChannelHandlerContext#invokeChannelRead(java.lang.Object) private void invokeChannelRead(Object msg) { if (invokeHandler()) { try { // 开始调用真正的 channelRead() ((ChannelInboundHandler) handler()).channelRead(this, msg); } catch (Throwable t) { notifyHandlerException(t); } } else { fireChannelRead(msg); } } // io.netty.channel.DefaultChannelPipeline.HeadContext#channelRead @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { // head 节点没有什么特别需要处理的,直接继续调用 fireChannelRead() 即可 ctx.fireChannelRead(msg); } // io.netty.channel.AbstractChannelHandlerContext#fireChannelRead @Override public ChannelHandlerContext fireChannelRead(final Object msg) { // 查找下一个入站处理器(查找方式前面已看过,就是以当前节点作为起点查找pipeline的下一个入站 channelHandlerContext, 调用即可 // 此处调用与head节点的调用不同之处在于, head的调用是硬编码的, 但此处则是动态的, 可递归的 // 而真正的差别是在于 channelHandler 的实现不同,从而处理不同的业务 // 对于刚刚 accept 之后的数据,必然会经过 Acceptor, 如下 invokeChannelRead(findContextInbound(), msg); return this; } // 几经周折, 最终转到 ServerBootstrapAcceptor, 它会进行真正的数据处理, 实际上就是提交数据到 childGroup 中 // io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead @Override @SuppressWarnings("unchecked") public void channelRead(ChannelHandlerContext ctx, Object msg) { // 对外部的channel进行还原, 将业务的 childHandler 添加到 pipeline 中 // 添加方式与之前的一样,会涉及到name的生成,ChannelHandlerContext的构建。。。 final Channel child = (Channel) msg; // 将业务设置的 childHandler 绑定到child pipeline 中, 即此时才会触发 ChannelInitializer.initChannel() // 每次新的socket接入, 都会触发一次 initChannel() 哦 child.pipeline().addLast(childHandler); // 复制各种配置属性到 child 中 setChannelOptions(child, childOptions, logger); for (Entry, Object> e: childAttrs) { child.attr((AttributeKey
acceptor 最主要的工作就是将socket提交到 childGroup 中. 而childGroup的注册过程, 与bossGroup的注册过程是一致的, 它们的最大差异在于关注的事件不一致. acceptor 关注 OP_ACCEPT, 而childGroup 关注 OP_READ.
2.3 readComplete 事件的传播
实际上,在bossGroup中, readComplete() 事件基本是会不被关注的, 但我们也可以通过它来了解下 readComplete 的传播方式吧! 总体和 read() 事件的传播是一致的.
// io.netty.channel.DefaultChannelPipeline#fireChannelReadComplete @Override public final ChannelPipeline fireChannelReadComplete() { // 同样以 head 作为起点开始传播 AbstractChannelHandlerContext.invokeChannelReadComplete(head); return this; } // 通用的调用 handler 方式 // io.netty.channel.AbstractChannelHandlerContext#invokeChannelReadComplete(io.netty.channel.AbstractChannelHandlerContext) static void invokeChannelReadComplete(final AbstractChannelHandlerContext next) { EventExecutor executor = next.executor(); if (executor.inEventLoop()) { next.invokeChannelReadComplete(); } else { Runnable task = next.invokeChannelReadCompleteTask; if (task == null) { next.invokeChannelReadCompleteTask = task = new Runnable() { @Override public void run() { next.invokeChannelReadComplete(); } }; } executor.execute(task); } } // 通用pipeline调用模型 // io.netty.channel.AbstractChannelHandlerContext#invokeChannelReadComplete() private void invokeChannelReadComplete() { if (invokeHandler()) { try { ((ChannelInboundHandler) handler()).channelReadComplete(this); } catch (Throwable t) { notifyHandlerException(t); } } else { fireChannelReadComplete(); } } // io.netty.channel.DefaultChannelPipeline.HeadContext#channelReadComplete @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { ctx.fireChannelReadComplete(); readIfIsAutoRead(); } // io.netty.channel.AbstractChannelHandlerContext#fireChannelReadComplete @Override public ChannelHandlerContext fireChannelReadComplete() { // 通用的 fireXXX 事件传播方式,如果想调用下一节点,则调用 fireXXX, 否则pipeline将会被终止 // 以当前节点作为起点查找下一个入站处理器 handler // 在acceptor中,最终会转到 ServerBootstrapAcceptor.readComplete()中 invokeChannelReadComplete(findContextInbound()); return this; } // io.netty.channel.ChannelInboundHandlerAdapter#channelReadComplete /** * Calls {@link ChannelHandlerContext#fireChannelReadComplete()} to forward * to the next {@link ChannelInboundHandler} in the {@link ChannelPipeline}. * * Sub-classes may override this method to change behavior. */ @Override public void channelReadComplete(ChannelHandlerContext ctx) throws Exception { // 因为 ServerBootstrapAcceptor 并没有重写 channelReadComplete 方法,所以直接忽略该事件了 // 而 tail 节点中的默认 onUnhandledInboundChannelReadComplete() 也是空处理 ctx.fireChannelReadComplete(); }
总结下 pipeline 的传播方式:
1. 以 pipeline.fireChannelReadComplete() 等方式触发事件传播;
2. 调用 invokeChannelReadComplete, 传入 head或者tail作为传播的起点;
3. 判断是否在 eventloop 中,如果是则直接调用 next.invokeChannelReadComplete();
4. 调用 handler.channelReadComplete(this) 触发具体的事件;
5. 具体handler处理事务,如果想向下一节点传播,则调用 ctx.fireChannelReadComplete(), 否则停止传播;
以上是以 fireChannelReadComplete 来讲解的pipeline过程,实际上也是几乎所有的事件传播的方式。
3. childGroup 运行io操作
上一节讲到的是acceptor接入了socket, 他会提交到childGroup中进行处理, 然后自己就返回了。那么 childGroup 又是如何处理事务的呢?
实际上,它与bossGroup是完全一样的处理方式,差别在于它们各自的pipeline是不一样的,线程数是不一样的,从而实现处理不同业务。而它处理是的读写事件,而acceptor则是处理的OP_ACCEPT事件。它的OP_READ事件是在创建NioSocketChannel的时候注册好的。我们先看看下:
// 在bossGroup处理Accept事件时,创建 NioSocketChannel // io.netty.channel.socket.nio.NioServerSocketChannel#doReadMessages @Override protected int doReadMessages(List
ok, 说回childGroup处理事件流中。因大家都是 NioEventLoopGroup, 所以创建的eventloop自然都是一样的。即都会处理io事件和task运行。回顾下上节的processSelectedKey()操作:
// io.netty.channel.nio.NioEventLoop#processSelectedKey(java.nio.channels.SelectionKey, io.netty.channel.nio.AbstractNioChannel) private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) { final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe(); if (!k.isValid()) { final EventLoop eventLoop; try { eventLoop = ch.eventLoop(); } catch (Throwable ignored) { // If the channel implementation throws an exception because there is no event loop, we ignore this // because we are only trying to determine if ch is registered to this event loop and thus has authority // to close ch. return; } // Only close ch if ch is still registered to this EventLoop. ch could have deregistered from the event loop // and thus the SelectionKey could be cancelled as part of the deregistration process, but the channel is // still healthy and should not be closed. // See https://github.com/netty/netty/issues/5125 if (eventLoop != this || eventLoop == null) { return; } // close the channel if the key is not valid anymore unsafe.close(unsafe.voidPromise()); return; } try { int readyOps = k.readyOps(); // We first need to call finishConnect() before try to trigger a read(...) or write(...) as otherwise // the NIO JDK channel implementation may throw a NotYetConnectedException. if ((readyOps & SelectionKey.OP_CONNECT) != 0) { // remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking // See https://github.com/netty/netty/issues/924 int ops = k.interestOps(); ops &= ~SelectionKey.OP_CONNECT; k.interestOps(ops); unsafe.finishConnect(); } // Process OP_WRITE first as we may be able to write some queued buffers and so free memory. if ((readyOps & SelectionKey.OP_WRITE) != 0) { // Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write ch.unsafe().forceFlush(); } // Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead // to a spin loop if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) { // 走不一样的 unsafe 实现 unsafe.read(); } } catch (CancelledKeyException ignored) { unsafe.close(unsafe.voidPromise()); } } // io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read @Override public final void read() { final ChannelConfig config = config(); // 判断是否终止读数据,比如socket关闭等原因 if (shouldBreakReadReady(config)) { clearReadPending(); return; } // step1. 环境准备,pipeline, allocator... // 这里的 pipeline 就是我们自定义传入的各种handler了 final ChannelPipeline pipeline = pipeline(); final ByteBufAllocator allocator = config.getAllocator(); final RecvByteBufAllocator.Handle allocHandle = recvBufAllocHandle(); allocHandle.reset(config); ByteBuf byteBuf = null; boolean close = false; try { do { // 每次循环读取数据时,都进行重新内存分配,默认分配 1024的byte内存 byteBuf = allocHandle.allocate(allocator); // step2. 将数据读取放入 byteBuf 中, 并由 allocHandle 记录读取的数据 allocHandle.lastBytesRead(doReadBytes(byteBuf)); // 当数据读取完成或者进行close时,会读取 -1 if (allocHandle.lastBytesRead() <= 0) { // nothing was read. release the buffer. byteBuf.release(); byteBuf = null; close = allocHandle.lastBytesRead() < 0; if (close) { // There is nothing left to read as we received an EOF. readPending = false; } break; } // 读取数据记录次数 +1 allocHandle.incMessagesRead(1); readPending = false; // step3. 触发pipeline 的channelRead() 事件 pipeline.fireChannelRead(byteBuf); byteBuf = null; } while (allocHandle.continueReading()); allocHandle.readComplete(); // 触发 channelReadComplete 事件,传播 pipeline.fireChannelReadComplete(); if (close) { closeOnRead(pipeline); } } catch (Throwable t) { handleReadException(pipeline, byteBuf, t, close, allocHandle); } finally { // Check if there is a readPending which was not processed yet. // This could be for two reasons: // * The user called Channel.read() or ChannelHandlerContext.read() in channelRead(...) method // * The user called Channel.read() or ChannelHandlerContext.read() in channelReadComplete(...) method // // See https://github.com/netty/netty/issues/2254 if (!readPending && !config.isAutoRead()) { removeReadOp(); } } } }
以上,就是 childGroup 处理 io 事件的基本过程了。总体和acceptor的差不多,这也是netty抽象得比较合理的地方,所有地方都可以套用同一个模式。
1. 准备环境,获取pipeline,配置config分配内存;
2. doReadBytes() 读取数据buffer, 最大读取1024字节;
3. 读取完成后记录并触发pipeline下游处理本次的channelRead()事件,保证各handler都有机会处理该部分数据;
4. 只要数据没读取完,且没有超过最大数据量限制,循环处理2/3步骤;
5. 总体触发一次 channelReadComplete 事件,并同理在pipeline中传播;
6. 异常处理,close处理;
pipeline 的传播方式, 前面我们已经见识过了,范式就是:read() 作为入站事件, 从head开始传播,依次调用各handler的channelRead()方法,直到链尾。
接下来我们就其中几个关键的步骤看下,netty都是如何实现的。
3.1 doReadBytes 读取socket数据
// 想想应该都能知道,就是从socket中将buffer读取存入到 byteBuf 中 // io.netty.channel.socket.nio.NioSocketChannel#doReadBytes @Override protected int doReadBytes(ByteBuf byteBuf) throws Exception { final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle(); allocHandle.attemptedBytesRead(byteBuf.writableBytes()); // 获取 SocketChannel, 然后读取其中的数据, 写入 byteBuf 中,也是一个从内核到heap的一个拷贝过程 return byteBuf.writeBytes(javaChannel(), allocHandle.attemptedBytesRead()); } // io.netty.buffer.AbstractByteBuf#writeBytes @Override public int writeBytes(ScatteringByteChannel in, int length) throws IOException { ensureWritable(length); int writtenBytes = setBytes(writerIndex, in, length); // 保证写指针的同步 if (writtenBytes > 0) { writerIndex += writtenBytes; } return writtenBytes; } // io.netty.buffer.PooledUnsafeDirectByteBuf#setBytes @Override public int setBytes(int index, ScatteringByteChannel in, int length) throws IOException { checkIndex(index, length); // 获取 ByteBuf 的共享变量,设值后 ByteBuf 可共享到 // DirectByteBuffer 就体现在这里 ByteBuffer tmpBuf = internalNioBuffer(); index = idx(index); tmpBuf.clear().position(index).limit(index + length); try { // 从 socketChannel 中读取数据到 tmpBuf 中, // 此处看起来是存在内存拷贝,但实际上被使用直接内存时,并不会新建,而直接共用内核中内存数据即可 return in.read(tmpBuf); } catch (ClosedChannelException ignored) { return -1; } }
以上就是socket数据的读取过程了,总体可以描述为内核内存到java堆内存的拷贝过程(当然具体实现方式是另一回事)。
数据读取完成后(可能是部分),就会交pipeline处理这部分数据,head -> handler... -> tail 的过程。我们还是一个具体的 netty提供的一个解码的实现:
3.2 netty解码实现1 byteToMsg
就是一个 channelRead 处理过程 。
// io.netty.handler.codec.ByteToMessageDecoder#channelRead @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { if (msg instanceof ByteBuf) { CodecOutputList out = CodecOutputList.newInstance(); try { ByteBuf data = (ByteBuf) msg; first = cumulation == null; // 如果是第一次进来,则直接赋值data, 后续则附加到 cumulation 中,以达到连接字节的作用 // 一般每个连接进来之后,会创建一个 Decoder, 后续处理数据就会都会存在连接总是,但总体来说都是线程安全的 if (first) { cumulation = data; } else { cumulation = cumulator.cumulate(ctx.alloc(), cumulation, data); } // 调用decode方法,将byte转换为string callDecode(ctx, cumulation, out); } catch (DecoderException e) { throw e; } catch (Exception e) { throw new DecoderException(e); } finally { if (cumulation != null && !cumulation.isReadable()) { numReads = 0; // 释放buffer cumulation.release(); cumulation = null; } else if (++ numReads >= discardAfterReads) { // We did enough reads already try to discard some bytes so we not risk to see a OOME. // See https://github.com/netty/netty/issues/4275 numReads = 0; discardSomeReadBytes(); } int size = out.size(); decodeWasNull = !out.insertSinceRecycled(); // 通知下游数据到来,依次遍历out的数据调用下游 fireChannelRead(ctx, out, size); out.recycle(); } } else { ctx.fireChannelRead(msg); } } // io.netty.handler.codec.ByteToMessageDecoder#callDecode /** * Called once data should be decoded from the given {@link ByteBuf}. This method will call * {@link #decode(ChannelHandlerContext, ByteBuf, List)} as long as decoding should take place. * * @param ctx the {@link ChannelHandlerContext} which this {@link ByteToMessageDecoder} belongs to * @param in the {@link ByteBuf} from which to read data * @param out the {@link List} to which decoded messages should be added */ protected void callDecode(ChannelHandlerContext ctx, ByteBuf in, List
总结下对数据的解码过程:
1. 接收外部读取的byteBuf;
2. 判断数据是否足够进行解码,如果解码成功将其添加到out中;
3. 将out的数据传入到pipeline下游,进行业务处理;
4. 释放已读取的buffer数据,进入下一次数据读取准备;
对于短连接请求,每次都会有新的encoder, decoder, 但对于长连接而言, 则会复用之前的handler, 从而也需要处理好各数据的分界问题,即自定义协议时得够严谨以避免误读。
4. write 数据的实现
write 数据是向对端进行数据输出的过程,一般有 write, 和 flush 过程, write 仅向应用缓冲中写入数据,在合适的时候flush到对端。而writeAndFlush则表示立即输出数据到对端。有 DefaultChannelHandlerContext 的实现:
// io.netty.channel.AbstractChannelHandlerContext#writeAndFlush @Override public ChannelFuture writeAndFlush(Object msg) { return writeAndFlush(msg, newPromise()); } // io.netty.channel.AbstractChannelHandlerContext#newPromise @Override public ChannelPromise newPromise() { // channel 会从pipeline中获取, executor 即channel中绑定的io线程 return new DefaultChannelPromise(channel(), executor()); } // io.netty.channel.AbstractChannelHandlerContext#writeAndFlush @Override public ChannelFuture writeAndFlush(Object msg, ChannelPromise promise) { if (msg == null) { throw new NullPointerException("msg"); } // channel 等信息校验 if (isNotValidPromise(promise, true)) { ReferenceCountUtil.release(msg); // cancelled return promise; } // 写数据, flush=true write(msg, true, promise); return promise; } private void write(Object msg, boolean flush, ChannelPromise promise) { // write 为出站事件, 从当前节点查找 出站handler, 直到head AbstractChannelHandlerContext next = findContextOutbound(); final Object m = pipeline.touch(msg, next); EventExecutor executor = next.executor(); if (executor.inEventLoop()) { if (flush) { // 下一节点处理 next.invokeWriteAndFlush(m, promise); } else { next.invokeWrite(m, promise); } } else { AbstractWriteTask task; if (flush) { task = WriteAndFlushTask.newInstance(next, m, promise); } else { task = WriteTask.newInstance(next, m, promise); } safeExecute(executor, task, promise, m); } } // io.netty.channel.AbstractChannelHandlerContext#invokeWriteAndFlush private void invokeWriteAndFlush(Object msg, ChannelPromise promise) { if (invokeHandler()) { // step1. write 事件写数据到缓冲区 invokeWrite0(msg, promise); // step2. flush 事件写缓冲区数据到对端 invokeFlush0(); } else { writeAndFlush(msg, promise); } }
4.1 netty write 的事件如何处理
write 含义明确,写数据到xxx。那这是如何实现的呢?(仅从应用层分析,咱们就不讨论底层TCP协议了)
实际上,它就是write事件的传播过程,最终由 head 节点处理。
private void invokeWrite0(Object msg, ChannelPromise promise) { try { // write 传递 ((ChannelOutboundHandler) handler()).write(this, msg, promise); } catch (Throwable t) { notifyOutboundHandlerException(t, promise); } } // 此处由 encoder 进行处理 // io.netty.handler.codec.MessageToByteEncoder#write @Override public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception { ByteBuf buf = null; try { if (acceptOutboundMessage(msg)) { @SuppressWarnings("unchecked") I cast = (I) msg; // 分配byteBuf, 处理输出,和读取一样,可以使用 DirectByteBuffer buf = allocateBuffer(ctx, cast, preferDirect); try { // 调用业务实现的 encode 方法,写数据到 buf 中 encode(ctx, cast, buf); } finally { ReferenceCountUtil.release(cast); } if (buf.isReadable()) { // 如果被写入数据到 buf 中,则传播write事件 // 直到head 完成 ctx.write(buf, promise); } else { buf.release(); ctx.write(Unpooled.EMPTY_BUFFER, promise); } buf = null; } else { ctx.write(msg, promise); } } catch (EncoderException e) { throw e; } catch (Throwable e) { throw new EncoderException(e); } finally { if (buf != null) { buf.release(); } } } @Override public ByteBuf ioBuffer() { if (PlatformDependent.hasUnsafe()) { return directBuffer(DEFAULT_INITIAL_CAPACITY); } return heapBuffer(DEFAULT_INITIAL_CAPACITY); } // head 节点会处理具体的写入细节 @Override public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception { unsafe.write(msg, promise); } // io.netty.channel.AbstractChannel.AbstractUnsafe#write @Override public final void write(Object msg, ChannelPromise promise) { assertEventLoop(); ChannelOutboundBuffer outboundBuffer = this.outboundBuffer; if (outboundBuffer == null) { // If the outboundBuffer is null we know the channel was closed and so // need to fail the future right away. If it is not null the handling of the rest // will be done in flush0() // See https://github.com/netty/netty/issues/2362 safeSetFailure(promise, WRITE_CLOSED_CHANNEL_EXCEPTION); // release message now to prevent resource-leak ReferenceCountUtil.release(msg); return; } int size; try { // 处理为 DirectByteBuffer msg = filterOutboundMessage(msg); size = pipeline.estimatorHandle().size(msg); if (size < 0) { size = 0; } } catch (Throwable t) { safeSetFailure(promise, t); ReferenceCountUtil.release(msg); return; } // 添加数据到 outboundBuffer 中,即输出缓冲区 outboundBuffer.addMessage(msg, size, promise); } // io.netty.channel.nio.AbstractNioByteChannel#filterOutboundMessage @Override protected final Object filterOutboundMessage(Object msg) { if (msg instanceof ByteBuf) { ByteBuf buf = (ByteBuf) msg; if (buf.isDirect()) { return msg; } return newDirectBuffer(buf); } if (msg instanceof FileRegion) { return msg; } throw new UnsupportedOperationException( "unsupported message type: " + StringUtil.simpleClassName(msg) + EXPECTED_TYPES); } // io.netty.channel.ChannelOutboundBuffer#addMessage /** * Add given message to this {@link ChannelOutboundBuffer}. The given {@link ChannelPromise} will be notified once * the message was written. */ public void addMessage(Object msg, int size, ChannelPromise promise) { Entry entry = Entry.newInstance(msg, size, total(msg), promise); if (tailEntry == null) { flushedEntry = null; } else { Entry tail = tailEntry; tail.next = entry; } tailEntry = entry; if (unflushedEntry == null) { unflushedEntry = entry; } // increment pending bytes after adding message to the unflushed arrays. // See https://github.com/netty/netty/issues/1619 incrementPendingOutboundBytes(entry.pendingSize, false); } private void incrementPendingOutboundBytes(long size, boolean invokeLater) { if (size == 0) { return; } long newWriteBufferSize = TOTAL_PENDING_SIZE_UPDATER.addAndGet(this, size); if (newWriteBufferSize > channel.config().getWriteBufferHighWaterMark()) { // 超出一定数量后,需要主动flush setUnwritable(invokeLater); } } private void setUnwritable(boolean invokeLater) { for (;;) { final int oldValue = unwritable; final int newValue = oldValue | 1; if (UNWRITABLE_UPDATER.compareAndSet(this, oldValue, newValue)) { if (oldValue == 0 && newValue != 0) { fireChannelWritabilityChanged(invokeLater); } break; } } }
即write只向 outboundBuffer中写入数据,应该是比较快速的。但它也是经历了 pipeline 的事件流的层层处理,如果想在这其中做点什么,也是比较方便的。
4.2 flush 事件流处理
上面一步写入数据到 outboundBuffer 中,并未向对端响应数据,需要进行 flush 对端才能感知到。
private void invokeWriteAndFlush(Object msg, ChannelPromise promise) { if (invokeHandler()) { invokeWrite0(msg, promise); invokeFlush0(); } else { writeAndFlush(msg, promise); } } // io.netty.channel.AbstractChannelHandlerContext#invokeFlush0 private void invokeFlush0() { try { // 由 MessageEncoder 处理 ((ChannelOutboundHandler) handler()).flush(this); } catch (Throwable t) { notifyHandlerException(t); } } // io.netty.channel.ChannelOutboundHandlerAdapter#flush /** * Calls {@link ChannelHandlerContext#flush()} to forward * to the next {@link ChannelOutboundHandler} in the {@link ChannelPipeline}. * * Sub-classes may override this method to change behavior. */ @Override public void flush(ChannelHandlerContext ctx) throws Exception { ctx.flush(); } // io.netty.channel.AbstractChannelHandlerContext#flush @Override public ChannelHandlerContext flush() { // 出站handler, 依次调用, 直到head final AbstractChannelHandlerContext next = findContextOutbound(); EventExecutor executor = next.executor(); if (executor.inEventLoop()) { next.invokeFlush(); } else { Runnable task = next.invokeFlushTask; if (task == null) { next.invokeFlushTask = task = new Runnable() { @Override public void run() { next.invokeFlush(); } }; } safeExecute(executor, task, channel().voidPromise(), null); } return this; } private void invokeFlush() { if (invokeHandler()) { // 遍历 pipeline invokeFlush0(); } else { flush(); } } // head 节点负责最终的数据flush // io.netty.channel.DefaultChannelPipeline.HeadContext#flush @Override public void flush(ChannelHandlerContext ctx) throws Exception { // unsafe 为 NioSocketChannel$NioSocketChannelUnsafe unsafe.flush(); } // io.netty.channel.AbstractChannel.AbstractUnsafe#flush @Override public final void flush() { assertEventLoop(); ChannelOutboundBuffer outboundBuffer = this.outboundBuffer; if (outboundBuffer == null) { return; } outboundBuffer.addFlush(); flush0(); } // io.netty.channel.ChannelOutboundBuffer#addFlush /** * Add a flush to this {@link ChannelOutboundBuffer}. This means all previous added messages are marked as flushed * and so you will be able to handle them. */ public void addFlush() { // There is no need to process all entries if there was already a flush before and no new messages // where added in the meantime. // // See https://github.com/netty/netty/issues/2577 // 使用 unflushedEntry 保存要被 flush 的数据 Entry entry = unflushedEntry; if (entry != null) { if (flushedEntry == null) { // there is no flushedEntry yet, so start with the entry flushedEntry = entry; } do { flushed ++; if (!entry.promise.setUncancellable()) { // Was cancelled so make sure we free up memory and notify about the freed bytes int pending = entry.cancel(); decrementPendingOutboundBytes(pending, false, true); } entry = entry.next; } while (entry != null); // All flushed so reset unflushedEntry unflushedEntry = null; } } // io.netty.channel.nio.AbstractNioChannel.AbstractNioUnsafe#flush0 @Override protected final void flush0() { // Flush immediately only when there's no pending flush. // If there's a pending flush operation, event loop will call forceFlush() later, // and thus there's no need to call it now. // 第一次进入此处,将会尝试立即向socket中写入数据或者立即注册一个 OP_WRITE 事件,以触发写 if (!isFlushPending()) { super.flush0(); } } private boolean isFlushPending() { SelectionKey selectionKey = selectionKey(); return selectionKey.isValid() && (selectionKey.interestOps() & SelectionKey.OP_WRITE) != 0; } // io.netty.channel.AbstractChannel.AbstractUnsafe#flush0 @SuppressWarnings("deprecation") protected void flush0() { if (inFlush0) { // Avoid re-entrance return; } final ChannelOutboundBuffer outboundBuffer = this.outboundBuffer; if (outboundBuffer == null || outboundBuffer.isEmpty()) { return; } inFlush0 = true; // Mark all pending write requests as failure if the channel is inactive. if (!isActive()) { try { if (isOpen()) { outboundBuffer.failFlushed(FLUSH0_NOT_YET_CONNECTED_EXCEPTION, true); } else { // Do not trigger channelWritabilityChanged because the channel is closed already. outboundBuffer.failFlushed(FLUSH0_CLOSED_CHANNEL_EXCEPTION, false); } } finally { inFlush0 = false; } return; } try { doWrite(outboundBuffer); } catch (Throwable t) { if (t instanceof IOException && config().isAutoClose()) { /** * Just call {@link #close(ChannelPromise, Throwable, boolean)} here which will take care of * failing all flushed messages and also ensure the actual close of the underlying transport * will happen before the promises are notified. * * This is needed as otherwise {@link #isActive()} , {@link #isOpen()} and {@link #isWritable()} * may still return {@code true} even if the channel should be closed as result of the exception. */ close(voidPromise(), t, FLUSH0_CLOSED_CHANNEL_EXCEPTION, false); } else { try { shutdownOutput(voidPromise(), t); } catch (Throwable t2) { close(voidPromise(), t2, FLUSH0_CLOSED_CHANNEL_EXCEPTION, false); } } } finally { inFlush0 = false; } } // io.netty.channel.socket.nio.NioSocketChannel#doWrite @Override protected void doWrite(ChannelOutboundBuffer in) throws Exception { SocketChannel ch = javaChannel(); int writeSpinCount = config().getWriteSpinCount(); do { if (in.isEmpty()) { // All written so clear OP_WRITE clearOpWrite(); // Directly return here so incompleteWrite(...) is not called. return; } // Ensure the pending writes are made of ByteBufs only. int maxBytesPerGatheringWrite = ((NioSocketChannelConfig) config).getMaxBytesPerGatheringWrite(); ByteBuffer[] nioBuffers = in.nioBuffers(1024, maxBytesPerGatheringWrite); int nioBufferCnt = in.nioBufferCount(); // Always us nioBuffers() to workaround data-corruption. // See https://github.com/netty/netty/issues/2761 switch (nioBufferCnt) { case 0: // We have something else beside ByteBuffers to write so fallback to normal writes. writeSpinCount -= doWrite0(in); break; case 1: { // Only one ByteBuf so use non-gathering write // Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need // to check if the total size of all the buffers is non-zero. ByteBuffer buffer = nioBuffers[0]; int attemptedBytes = buffer.remaining(); // 向socket中写入数据,完事,写入多少数据量返回,以便判定是否写完 final int localWrittenBytes = ch.write(buffer); if (localWrittenBytes <= 0) { incompleteWrite(true); return; } adjustMaxBytesPerGatheringWrite(attemptedBytes, localWrittenBytes, maxBytesPerGatheringWrite); in.removeBytes(localWrittenBytes); // 减少可写次数,超过最大可写次数,退出 --writeSpinCount; break; } default: { // Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need // to check if the total size of all the buffers is non-zero. // We limit the max amount to int above so cast is safe long attemptedBytes = in.nioBufferSize(); final long localWrittenBytes = ch.write(nioBuffers, 0, nioBufferCnt); if (localWrittenBytes <= 0) { incompleteWrite(true); return; } // Casting to int is safe because we limit the total amount of data in the nioBuffers to int above. adjustMaxBytesPerGatheringWrite((int) attemptedBytes, (int) localWrittenBytes, maxBytesPerGatheringWrite); in.removeBytes(localWrittenBytes); --writeSpinCount; break; } } } while (writeSpinCount > 0); // 数据未写完,注册 OP_WRITE 事件 incompleteWrite(writeSpinCount < 0); } protected final void clearOpWrite() { final SelectionKey key = selectionKey(); // Check first if the key is still valid as it may be canceled as part of the deregistration // from the EventLoop // See https://github.com/netty/netty/issues/2104 if (!key.isValid()) { return; } final int interestOps = key.interestOps(); // 取消写事件监听 if ((interestOps & SelectionKey.OP_WRITE) != 0) { key.interestOps(interestOps & ~SelectionKey.OP_WRITE); } } // 获取 nioBufers ---------------------------------------------------- /** * Returns an array of direct NIO buffers if the currently pending messages are made of {@link ByteBuf} only. * {@link #nioBufferCount()} and {@link #nioBufferSize()} will return the number of NIO buffers in the returned * array and the total number of readable bytes of the NIO buffers respectively. ** Note that the returned array is reused and thus should not escape * {
@link AbstractChannel#doWrite(ChannelOutboundBuffer)}. * Refer to {@link NioSocketChannel#doWrite(ChannelOutboundBuffer)} for an example. * * @param maxCount The maximum amount of buffers that will be added to the return value. * @param maxBytes A hint toward the maximum number of bytes to include as part of the return value. Note that this * value maybe exceeded because we make a best effort to include at least 1 {@link ByteBuffer} * in the return value to ensure write progress is made. */ public ByteBuffer[] nioBuffers(int maxCount, long maxBytes) { assert maxCount > 0; assert maxBytes > 0; long nioBufferSize = 0; int nioBufferCount = 0; final InternalThreadLocalMap threadLocalMap = InternalThreadLocalMap.get(); ByteBuffer[] nioBuffers = NIO_BUFFERS.get(threadLocalMap); Entry entry = flushedEntry; while (isFlushedEntry(entry) && entry.msg instanceof ByteBuf) { if (!entry.cancelled) { ByteBuf buf = (ByteBuf) entry.msg; final int readerIndex = buf.readerIndex(); final int readableBytes = buf.writerIndex() - readerIndex; if (readableBytes > 0) { if (maxBytes - readableBytes < nioBufferSize && nioBufferCount != 0) { // If the nioBufferSize + readableBytes will overflow maxBytes, and there is at least one entry // we stop populate the ByteBuffer array. This is done for 2 reasons: // 1. bsd/osx don't allow to write more bytes then Integer.MAX_VALUE with one writev(...) call // and so will return 'EINVAL', which will raise an IOException. On Linux it may work depending // on the architecture and kernel but to be safe we also enforce the limit here. // 2. There is no sense in putting more data in the array than is likely to be accepted by the // OS. // // See also: // - https://www.freebsd.org/cgi/man.cgi?query=write&sektion=2 // - http://linux.die.net/man/2/writev break; } nioBufferSize += readableBytes; int count = entry.count; if (count == -1) { //noinspection ConstantValueVariableUse entry.count = count = buf.nioBufferCount(); } int neededSpace = min(maxCount, nioBufferCount + count); if (neededSpace > nioBuffers.length) { nioBuffers = expandNioBufferArray(nioBuffers, neededSpace, nioBufferCount); NIO_BUFFERS.set(threadLocalMap, nioBuffers); } if (count == 1) { ByteBuffer nioBuf = entry.buf; if (nioBuf == null) { // cache ByteBuffer as it may need to create a new ByteBuffer instance if its a // derived buffer entry.buf = nioBuf = buf.internalNioBuffer(readerIndex, readableBytes); } nioBuffers[nioBufferCount++] = nioBuf; } else { ByteBuffer[] nioBufs = entry.bufs; if (nioBufs == null) { // cached ByteBuffers as they may be expensive to create in terms // of Object allocation entry.bufs = nioBufs = buf.nioBuffers(); } for (int i = 0; i < nioBufs.length && nioBufferCount < maxCount; ++i) { ByteBuffer nioBuf = nioBufs[i]; if (nioBuf == null) { break; } else if (!nioBuf.hasRemaining()) { continue; } nioBuffers[nioBufferCount++] = nioBuf; } } if (nioBufferCount == maxCount) { break; } } } entry = entry.next; } this.nioBufferCount = nioBufferCount; this.nioBufferSize = nioBufferSize; return nioBuffers; } // 未写完数据的处理: 注册OP_WRITE事件让后续eventloop处理 // io.netty.channel.nio.AbstractNioByteChannel#incompleteWrite protected final void incompleteWrite(boolean setOpWrite) { // Did not write completely. if (setOpWrite) { setOpWrite(); } else { // It is possible that we have set the write OP, woken up by NIO because the socket is writable, and then // use our write quantum. In this case we no longer want to set the write OP because the socket is still // writable (as far as we know). We will find out next time we attempt to write if the socket is writable // and set the write OP if necessary. clearOpWrite(); // Schedule flush again later so other tasks can be picked up in the meantime eventLoop().execute(flushTask); } } // io.netty.channel.nio.AbstractNioByteChannel#setOpWrite protected final void setOpWrite() { final SelectionKey key = selectionKey(); // Check first if the key is still valid as it may be canceled as part of the deregistration // from the EventLoop // See https://github.com/netty/netty/issues/2104 if (!key.isValid()) { return; } final int interestOps = key.interestOps(); // 如果数据未被写完整,则主动注册写事件监听,让 eventloop 去处理 if ((interestOps & SelectionKey.OP_WRITE) == 0) { key.interestOps(interestOps | SelectionKey.OP_WRITE); } }
如上,写数据的过程理论都是通用的,都会先向应用缓冲中写入数据,然后再进行flush. netty 使用 DirectByteBuffer 进行写入优化,使用eventloop保证写入的完整性和及时性。
本文通过netty 对网络事件的处理过程,以对通用网络io处理实现方式的理解必然有所加深。