Netty(二):io请求处理过程解析

  文接上一篇。上篇讲到netty暴露一个端口出来,acceptor, handler, pipeline, eventloop 都已准备好。但是并没体现其如何处理接入新的网络请求,今天我们就一起来看看吧。

 

1. eventloop主循环

  上篇讲到,netty启动起来之后,就会有很多个eventloop线程会一直在循环工作(server通用特性),比如进行select或者执行task. 我们再来回顾 NioEventLoop 的实现方式吧!

  我们先看看下 NioEventLoop 的类图吧:

Netty(二):io请求处理过程解析_第1张图片

 

   看起来非常复杂,不管它。它核心方法自然是 run();

 

    // io.netty.channel.nio.NioEventLoop#run
    @Override
    protected void run() {
        // 一个死循环检测任务, 这就 eventloop 的大杀器哦
        for (;;) {
            try {
                switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) {
                    case SelectStrategy.CONTINUE:
                        continue;
                    // 有任务时执行任务, 否则阻塞等待网络事件, 或被唤醒
                    case SelectStrategy.SELECT:
                        // select.select(), 带超时限制
                        select(wakenUp.getAndSet(false));

                        // 'wakenUp.compareAndSet(false, true)' is always evaluated
                        // before calling 'selector.wakeup()' to reduce the wake-up
                        // overhead. (Selector.wakeup() is an expensive operation.)
                        //
                        // However, there is a race condition in this approach.
                        // The race condition is triggered when 'wakenUp' is set to
                        // true too early.
                        //
                        // 'wakenUp' is set to true too early if:
                        // 1) Selector is waken up between 'wakenUp.set(false)' and
                        //    'selector.select(...)'. (BAD)
                        // 2) Selector is waken up between 'selector.select(...)' and
                        //    'if (wakenUp.get()) { ... }'. (OK)
                        //
                        // In the first case, 'wakenUp' is set to true and the
                        // following 'selector.select(...)' will wake up immediately.
                        // Until 'wakenUp' is set to false again in the next round,
                        // 'wakenUp.compareAndSet(false, true)' will fail, and therefore
                        // any attempt to wake up the Selector will fail, too, causing
                        // the following 'selector.select(...)' call to block
                        // unnecessarily.
                        //
                        // To fix this problem, we wake up the selector again if wakenUp
                        // is true immediately after selector.select(...).
                        // It is inefficient in that it wakes up the selector for both
                        // the first case (BAD - wake-up required) and the second case
                        // (OK - no wake-up required).

                        if (wakenUp.get()) {
                            selector.wakeup();
                        }
                        // fall through
                    default:
                }

                cancelledKeys = 0;
                needsToSelectAgain = false;
                // ioRatio 为io操作的占比, 和运行任务相比, 默认为 50:50
                final int ioRatio = this.ioRatio;
                if (ioRatio == 100) {
                    try {
                        // step1. 运行io操作
                        processSelectedKeys();
                    } finally {
                        // Ensure we always run tasks.
                        // step2. 运行task任务
                        runAllTasks();
                    }
                } else {
                    final long ioStartTime = System.nanoTime();
                    try {
                        processSelectedKeys();
                    } finally {
                        // Ensure we always run tasks.
                        final long ioTime = System.nanoTime() - ioStartTime;
                        // 运行任务的最长时间
                        runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                    }
                }
            } catch (Throwable t) {
                handleLoopException(t);
            }
            // Always handle shutdown even if the loop processing threw an exception.
            try {
                if (isShuttingDown()) {
                    closeAll();
                    if (confirmShutdown()) {
                        return;
                    }
                }
            } catch (Throwable t) {
                handleLoopException(t);
            }
        }
    }
    // select, 事件循环的依据
    private void select(boolean oldWakenUp) throws IOException {
        Selector selector = this.selector;
        try {
            int selectCnt = 0;
            long currentTimeNanos = System.nanoTime();
            // 带超时限制, 默认最大超时1s, 但当有延时任务处理时, 以它为标准
            long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);

            for (;;) {
                long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;
                if (timeoutMillis <= 0) {
                    // 超时则立即返回
                    if (selectCnt == 0) {
                        selector.selectNow();
                        selectCnt = 1;
                    }
                    break;
                }

                // If a task was submitted when wakenUp value was true, the task didn't get a chance to call
                // Selector#wakeup. So we need to check task queue again before executing select operation.
                // If we don't, the task might be pended until select operation was timed out.
                // It might be pended until idle timeout if IdleStateHandler existed in pipeline.
                if (hasTasks() && wakenUp.compareAndSet(false, true)) {
                    selector.selectNow();
                    selectCnt = 1;
                    break;
                }

                int selectedKeys = selector.select(timeoutMillis);
                selectCnt ++;

                if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
                    // - Selected something,
                    // - waken up by user, or
                    // - the task queue has a pending task.
                    // - a scheduled task is ready for processing
                    break;
                }
                if (Thread.interrupted()) {
                    // Thread was interrupted so reset selected keys and break so we not run into a busy loop.
                    // As this is most likely a bug in the handler of the user or it's client library we will
                    // also log it.
                    //
                    // See https://github.com/netty/netty/issues/2426
                    if (logger.isDebugEnabled()) {
                        logger.debug("Selector.select() returned prematurely because " +
                                "Thread.currentThread().interrupt() was called. Use " +
                                "NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop.");
                    }
                    selectCnt = 1;
                    break;
                }

                long time = System.nanoTime();
                if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
                    // timeoutMillis elapsed without anything selected.
                    selectCnt = 1;
                } else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
                        selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
                    // The selector returned prematurely many times in a row.
                    // Rebuild the selector to work around the problem.
                    logger.warn(
                            "Selector.select() returned prematurely {} times in a row; rebuilding Selector {}.",
                            selectCnt, selector);

                    rebuildSelector();
                    selector = this.selector;

                    // Select again to populate selectedKeys.
                    selector.selectNow();
                    selectCnt = 1;
                    break;
                }

                currentTimeNanos = time;
            }

            if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {
                if (logger.isDebugEnabled()) {
                    logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",
                            selectCnt - 1, selector);
                }
            }
        } catch (CancelledKeyException e) {
            if (logger.isDebugEnabled()) {
                logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?",
                        selector, e);
            }
            // Harmless exception - log anyway
        }
    }

  大体来说就是:eventloop是一个一直在运行的线程,它会不停地检测是否发生了网络事件或者被提交上来了新任务,如果有那么就会去执行这些任务。

  在处理io事件和task时,为防止调度的饥饿问题,它设置了一个ioRatio来避免发生。即如果io事件占用了ioTime时间,那么task也应该占用相应剩下比例的时间,以保持公平性。

  在实现上,发现网络io事件是通过 selector.select()的,而发现task任务是通过 hasTasks()来实现检测的。每检测一次,一般不超过1s的休眠时间,以免在特殊情况下发生意外而导致系统假死。

 

2. acceptor 运行io操作

  io操作主要就是监控一些网络事件,比如新连接请求,请请求,写请求,关闭请求等。它是一个网络应用的非常核心的功能之一。从eventloop的核心循环中,我们看到其 processSelectedKeys() 就做网络io事件处理的。

    // io.netty.channel.nio.NioEventLoop#processSelectedKeys
    private void processSelectedKeys() {
        // selectedKeys 为前面进行bind()时初始化掉的,所以不会为空
        if (selectedKeys != null) {
            processSelectedKeysOptimized();
        } else {
            processSelectedKeysPlain(selector.selectedKeys());
        }
    }
    
    private void processSelectedKeysOptimized() {
        // 当无网络事件发生时,selectedKeys.size=0, 不会发生处理行为
        for (int i = 0; i < selectedKeys.size; ++i) {
            // 当有网络事件发生时,selectedKeys 为各就绪事件
            final SelectionKey k = selectedKeys.keys[i];
            // null out entry in the array to allow to have it GC'ed once the Channel close
            // See https://github.com/netty/netty/issues/2363
            selectedKeys.keys[i] = null;

            final Object a = k.attachment();

            if (a instanceof AbstractNioChannel) {
                // 转换成相应的channel, 调用
                processSelectedKey(k, (AbstractNioChannel) a);
            } else {
                @SuppressWarnings("unchecked")
                NioTask task = (NioTask) a;
                processSelectedKey(k, task);
            }

            if (needsToSelectAgain) {
                // null out entries in the array to allow to have it GC'ed once the Channel close
                // See https://github.com/netty/netty/issues/2363
                selectedKeys.reset(i + 1);

                selectAgain();
                i = -1;
            }
        }
    }
    // 处理具体的socket
    private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
        final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
        // 
        if (!k.isValid()) {
            final EventLoop eventLoop;
            try {
                eventLoop = ch.eventLoop();
            } catch (Throwable ignored) {
                // If the channel implementation throws an exception because there is no event loop, we ignore this
                // because we are only trying to determine if ch is registered to this event loop and thus has authority
                // to close ch.
                return;
            }
            // Only close ch if ch is still registered to this EventLoop. ch could have deregistered from the event loop
            // and thus the SelectionKey could be cancelled as part of the deregistration process, but the channel is
            // still healthy and should not be closed.
            // See https://github.com/netty/netty/issues/5125
            if (eventLoop != this || eventLoop == null) {
                return;
            }
            // close the channel if the key is not valid anymore
            unsafe.close(unsafe.voidPromise());
            return;
        }

        try {
            // 取出就绪事件类型进行判断
            int readyOps = k.readyOps();
            // We first need to call finishConnect() before try to trigger a read(...) or write(...) as otherwise
            // the NIO JDK channel implementation may throw a NotYetConnectedException.
            // 如果是连接事件,则先进行连接操作,触发 finishConnect() 事件链
            if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
                // remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking
                // See https://github.com/netty/netty/issues/924
                int ops = k.interestOps();
                ops &= ~SelectionKey.OP_CONNECT;
                k.interestOps(ops);

                unsafe.finishConnect();
            }

            // Process OP_WRITE first as we may be able to write some queued buffers and so free memory.
            // 如果是写事件,则强制channel写数据
            if ((readyOps & SelectionKey.OP_WRITE) != 0) {
                // Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write
                ch.unsafe().forceFlush();
            }

            // Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead
            // to a spin loop
            if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
                // 读取数据, OP_READ, OP_ACCEPT 会进入到此处,事件处理从此开始
                unsafe.read();
            }
        } catch (CancelledKeyException ignored) {
            unsafe.close(unsafe.voidPromise());
        }
    }
        // io.netty.channel.nio.AbstractNioMessageChannel.NioMessageUnsafe#read
        @Override
        public void read() {
            // 此处断言,只有io线程本身才可以进行read()操作,如果被其他线程执行,那就是有问题的
            assert eventLoop().inEventLoop();
            // 取出config, Pipeline...
            final ChannelConfig config = config();
            final ChannelPipeline pipeline = pipeline();
            // 调用 allocator 分配接收内存, io.netty.channel.AdaptiveRecvByteBufAllocator.HandleImpl
            // 并重置读取状态
            final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
            allocHandle.reset(config);

            boolean closed = false;
            Throwable exception = null;
            try {
                try {
                    do {
                        // 1. 初步读取数据
                        int localRead = doReadMessages(readBuf);
                        if (localRead == 0) {
                            break;
                        }
                        if (localRead < 0) {
                            closed = true;
                            break;
                        }
                        allocHandle.incMessagesRead(localRead);
                    // 通过allocHandle判定是否已读取数据完成
                    } while (allocHandle.continueReading());
                } catch (Throwable t) {
                    exception = t;
                }

                int size = readBuf.size();
                for (int i = 0; i < size; i ++) {
                    readPending = false;
                    // 2. 事件通知: fireChannelRead(), accept() 之后的channel作为数据源传入pipeline中
                    // 此 pipeline 结构为 head -> ServerBootstrapAcceptor -> tail 
                    pipeline.fireChannelRead(readBuf.get(i));
                }
                readBuf.clear();
                allocHandle.readComplete();
                // 事件通知: channelReadComplete()
                // 注意,此时read操作极有可能还未完成,而此进进行 complete 操作是否为时过早呢?
                // 是的,但是不用担心,eventLoop可以保证先提交的事件会先执行,所以这里就只管放心提交吧
                // 这也是accept不会阻塞eventLoop的原因,即虽然大家同在 eventLoop 上,但是accept很快就返回了
                pipeline.fireChannelReadComplete();

                if (exception != null) {
                    closed = closeOnReadError(exception);

                    pipeline.fireExceptionCaught(exception);
                }

                if (closed) {
                    inputShutdown = true;
                    if (isOpen()) {
                        close(voidPromise());
                    }
                }
            } finally {
                // Check if there is a readPending which was not processed yet.
                // This could be for two reasons:
                // * The user called Channel.read() or ChannelHandlerContext.read() in channelRead(...) method
                // * The user called Channel.read() or ChannelHandlerContext.read() in channelReadComplete(...) method
                //
                // See https://github.com/netty/netty/issues/2254
                if (!readPending && !config.isAutoRead()) {
                    removeReadOp();
                }
            }
        }
    }

  以上是处理一条io事件的大体流程:

    1. 调用 AdaptiveRecvByteBufAllocator 分配一个新的 ByteBuf, 用于接收新数据;
    2. 调用 doReadMessages() 转到 accept() 接收socket进来, 存入 ByteBuf 备用;
    3. 对接入的socket, 调用pipeline.fireChannelRead(), 处理读过程;
    4. 调用pipeline.fireChannelReadComplete() 方法,触发read完成事件;
    5. 异常处理;

  注意,当前运行的线程是在bossGroup中,它的pipeline是相对固定的,即只有head -> acceptor -> tail, 而我们的handler是在childGroup中的,所以我们只能再等等咯。

  下面我们就来细分解下这几个步骤!

 

2.1 acceptor 接入socket

  在调用AdaptiveRecvByteBufAllocator, 分配一个新的 allocHandle 之后,就进行socket的接入,实际上就是调用 serverSocketChannel.accept() 方法, 初步读取数据。来看下!

        // 处理预备 allocHandle, 以便进行判定是否数据读取完成
        // io.netty.channel.AbstractChannel.AbstractUnsafe#recvBufAllocHandle
        @Override
        public RecvByteBufAllocator.Handle recvBufAllocHandle() {
            if (recvHandle == null) {
                recvHandle = config().getRecvByteBufAllocator().newHandle();
            }
            return recvHandle;
        }
        // 重置读取状态
        // io.netty.channel.DefaultMaxMessagesRecvByteBufAllocator.MaxMessageHandle#reset
        @Override
        public void reset(ChannelConfig config) {
            this.config = config;
            maxMessagePerRead = maxMessagesPerRead();
            totalMessages = totalBytesRead = 0;
        }
        // 通过allocHandle判定是否已读取数据完成
        // io.netty.channel.DefaultMaxMessagesRecvByteBufAllocator.MaxMessageHandle#continueReading()
        @Override
        public boolean continueReading() {
            return continueReading(defaultMaybeMoreSupplier);
        }

        @Override
        public boolean continueReading(UncheckedBooleanSupplier maybeMoreDataSupplier) {
            return config.isAutoRead() &&
                   (!respectMaybeMoreData || maybeMoreDataSupplier.get()) &&
                    // accept 时, totalMessages = 1, 此条件必成立。
                    // 但totalBytesRead=0, 所以必然返回false, 还需要继续读数据
                   totalMessages < maxMessagePerRead &&
                   totalBytesRead > 0;
        }


    // accept 新的socket
    @Override
    protected int doReadMessages(List buf) throws Exception {
        // 也就是说, 对于netty而言, 是先知道有事件到来, 然后才去调用 accept() 方法的
        // 而accept() 方法则是会阻塞当前线程的哟, 但此时select()已经唤醒, 所以也意味着数据已经准备就绪,此处将会立即返回了
        SocketChannel ch = SocketUtils.accept(javaChannel());

        try {
            if (ch != null) {
                // 将当前注册的accept() 添加的buf结果中
                buf.add(new NioSocketChannel(this, ch));
                return 1;
            }
        } catch (Throwable t) {
            logger.warn("Failed to create a new channel from an accepted socket.", t);

            try {
                ch.close();
            } catch (Throwable t2) {
                logger.warn("Failed to close a socket.", t2);
            }
        }

        return 0;
    }
    // io.netty.util.internal.SocketUtils#accept
    public static SocketChannel accept(final ServerSocketChannel serverSocketChannel) throws IOException {
        try {
            return AccessController.doPrivileged(new PrivilegedExceptionAction() {
                @Override
                public SocketChannel run() throws IOException {
                    return serverSocketChannel.accept();
                }
            });
        } catch (PrivilegedActionException e) {
            throw (IOException) e.getCause();
        }
    } 
  
 

  将新接入的socket封装成 NioSocketChannel 后, 添加到 readBuf 中, 进入下一步.

 

2.2 read 事件传播

  socket 接入完成后, 会依次读取数据. (所以, 前面会同时接入多个 socket ??) pipeline 机制正式上场. 此时pipeline中有head,acceptor,tail, 但只有acceptor会真正处理数据. 

    // channelRead() 事件通知, 从 head 开始, 由 acceptor 处理
    // io.netty.channel.DefaultChannelPipeline#fireChannelRead
    @Override
    public final ChannelPipeline fireChannelRead(Object msg) {
        // 将pipeline中的head节点作为起始channelHandler传入,处理消息
        // head 实现: efaultChannelPipeline.HeadContext, 它既能处理 inbound, 也能处理 outbound 数据。 
        // 即其实现了 ChannelOutboundHandler, ChannelInboundHandler
        AbstractChannelHandlerContext.invokeChannelRead(head, msg);
        return this;
    }
    // io.netty.channel.AbstractChannelHandlerContext#invokeChannelRead(io.netty.channel.AbstractChannelHandlerContext, java.lang.Object)
    static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) {
        // 此处也是一个扩展点, 如果该channel实现了 ReferenceCounted, 则创建一个新的 ReferenceCounted msg 包装, 并调用其touch 方法
        final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next);
        EventExecutor executor = next.executor();
        if (executor.inEventLoop()) {
            // 当前事件循环发现的数据,直接走此处
            next.invokeChannelRead(m);
        } else {
            executor.execute(new Runnable() {
                @Override
                public void run() {
                    next.invokeChannelRead(m);
                }
            });
        }
    }
    // io.netty.channel.AbstractChannelHandlerContext#invokeChannelRead(java.lang.Object)
    private void invokeChannelRead(Object msg) {
        if (invokeHandler()) {
            try {
                // 开始调用真正的 channelRead()
                ((ChannelInboundHandler) handler()).channelRead(this, msg);
            } catch (Throwable t) {
                notifyHandlerException(t);
            }
        } else {
            fireChannelRead(msg);
        }
    }
        // io.netty.channel.DefaultChannelPipeline.HeadContext#channelRead
        @Override
        public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
            // head 节点没有什么特别需要处理的,直接继续调用 fireChannelRead() 即可
            ctx.fireChannelRead(msg);
        }
    // io.netty.channel.AbstractChannelHandlerContext#fireChannelRead
    @Override
    public ChannelHandlerContext fireChannelRead(final Object msg) {
        // 查找下一个入站处理器(查找方式前面已看过,就是以当前节点作为起点查找pipeline的下一个入站 channelHandlerContext, 调用即可
        // 此处调用与head节点的调用不同之处在于, head的调用是硬编码的, 但此处则是动态的, 可递归的
        // 而真正的差别是在于 channelHandler 的实现不同,从而处理不同的业务 
        // 对于刚刚 accept 之后的数据,必然会经过 Acceptor, 如下 
        invokeChannelRead(findContextInbound(), msg);
        return this;
    }
    
        // 几经周折, 最终转到 ServerBootstrapAcceptor, 它会进行真正的数据处理, 实际上就是提交数据到 childGroup 中
        // io.netty.bootstrap.ServerBootstrap.ServerBootstrapAcceptor#channelRead
        @Override
        @SuppressWarnings("unchecked")
        public void channelRead(ChannelHandlerContext ctx, Object msg) {
            // 对外部的channel进行还原, 将业务的 childHandler 添加到 pipeline 中
            // 添加方式与之前的一样,会涉及到name的生成,ChannelHandlerContext的构建。。。
            final Channel child = (Channel) msg;
            // 将业务设置的 childHandler 绑定到child pipeline 中, 即此时才会触发 ChannelInitializer.initChannel()
            // 每次新的socket接入, 都会触发一次 initChannel() 哦
            child.pipeline().addLast(childHandler);
            // 复制各种配置属性到 child 中
            setChannelOptions(child, childOptions, logger);

            for (Entry, Object> e: childAttrs) {
                child.attr((AttributeKey) e.getKey()).set(e.getValue());
            }

            try {
                // 注册child, 以及添加一个 回调
                // register 时就会将当前channel与一个eventLoop线程绑定起来,后续所有的操作将会在这个eventloop线程上执行
                // 同时,它会将当前channel与 nio的selector 绑定注册起来
                // 到此,acceptor的任务就算完成了
                childGroup.register(child).addListener(new ChannelFutureListener() {
                    @Override
                    public void operationComplete(ChannelFuture future) throws Exception {
                        if (!future.isSuccess()) {
                            forceClose(child, future.cause());
                        }
                    }
                });
            } catch (Throwable t) {
                forceClose(child, t);
            }
        } 
  
 

  acceptor 最主要的工作就是将socket提交到 childGroup 中. 而childGroup的注册过程, 与bossGroup的注册过程是一致的, 它们的最大差异在于关注的事件不一致. acceptor 关注 OP_ACCEPT, 而childGroup 关注 OP_READ.

 

2.3 readComplete 事件的传播

  实际上,在bossGroup中, readComplete() 事件基本是会不被关注的, 但我们也可以通过它来了解下 readComplete 的传播方式吧! 总体和 read() 事件的传播是一致的.

    // io.netty.channel.DefaultChannelPipeline#fireChannelReadComplete
    @Override
    public final ChannelPipeline fireChannelReadComplete() {
        // 同样以 head 作为起点开始传播
        AbstractChannelHandlerContext.invokeChannelReadComplete(head);
        return this;
    }
    // 通用的调用 handler 方式
    // io.netty.channel.AbstractChannelHandlerContext#invokeChannelReadComplete(io.netty.channel.AbstractChannelHandlerContext)
    static void invokeChannelReadComplete(final AbstractChannelHandlerContext next) {
        EventExecutor executor = next.executor();
        if (executor.inEventLoop()) {
            next.invokeChannelReadComplete();
        } else {
            Runnable task = next.invokeChannelReadCompleteTask;
            if (task == null) {
                next.invokeChannelReadCompleteTask = task = new Runnable() {
                    @Override
                    public void run() {
                        next.invokeChannelReadComplete();
                    }
                };
            }
            executor.execute(task);
        }
    }
    // 通用pipeline调用模型
    // io.netty.channel.AbstractChannelHandlerContext#invokeChannelReadComplete()
    private void invokeChannelReadComplete() {
        if (invokeHandler()) {
            try {
                ((ChannelInboundHandler) handler()).channelReadComplete(this);
            } catch (Throwable t) {
                notifyHandlerException(t);
            }
        } else {
            fireChannelReadComplete();
        }
    }
        // io.netty.channel.DefaultChannelPipeline.HeadContext#channelReadComplete
        @Override
        public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
            ctx.fireChannelReadComplete();

            readIfIsAutoRead();
        }
    // io.netty.channel.AbstractChannelHandlerContext#fireChannelReadComplete
    @Override
    public ChannelHandlerContext fireChannelReadComplete() {
        // 通用的 fireXXX 事件传播方式,如果想调用下一节点,则调用 fireXXX, 否则pipeline将会被终止
        // 以当前节点作为起点查找下一个入站处理器 handler
        // 在acceptor中,最终会转到 ServerBootstrapAcceptor.readComplete()中
        invokeChannelReadComplete(findContextInbound());
        return this;
    }
    
    // io.netty.channel.ChannelInboundHandlerAdapter#channelReadComplete
    /**
     * Calls {@link ChannelHandlerContext#fireChannelReadComplete()} to forward
     * to the next {@link ChannelInboundHandler} in the {@link ChannelPipeline}.
     *
     * Sub-classes may override this method to change behavior.
     */
    @Override
    public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
        // 因为 ServerBootstrapAcceptor 并没有重写 channelReadComplete 方法,所以直接忽略该事件了
        // 而 tail 节点中的默认 onUnhandledInboundChannelReadComplete() 也是空处理
        ctx.fireChannelReadComplete();
    }

  总结下 pipeline 的传播方式:

    1. 以 pipeline.fireChannelReadComplete() 等方式触发事件传播;
    2. 调用 invokeChannelReadComplete, 传入 head或者tail作为传播的起点;
    3. 判断是否在 eventloop 中,如果是则直接调用 next.invokeChannelReadComplete();
    4. 调用 handler.channelReadComplete(this) 触发具体的事件;
    5. 具体handler处理事务,如果想向下一节点传播,则调用 ctx.fireChannelReadComplete(), 否则停止传播;

  以上是以 fireChannelReadComplete 来讲解的pipeline过程,实际上也是几乎所有的事件传播的方式。

 

3. childGroup 运行io操作

  上一节讲到的是acceptor接入了socket, 他会提交到childGroup中进行处理, 然后自己就返回了。那么 childGroup 又是如何处理事务的呢?

  实际上,它与bossGroup是完全一样的处理方式,差别在于它们各自的pipeline是不一样的,线程数是不一样的,从而实现处理不同业务。而它处理是的读写事件,而acceptor则是处理的OP_ACCEPT事件。它的OP_READ事件是在创建NioSocketChannel的时候注册好的。我们先看看下:

    // 在bossGroup处理Accept事件时,创建 NioSocketChannel
    // io.netty.channel.socket.nio.NioServerSocketChannel#doReadMessages
    @Override
    protected int doReadMessages(List buf) throws Exception {
        SocketChannel ch = SocketUtils.accept(javaChannel());

        try {
            if (ch != null) {
                buf.add(new NioSocketChannel(this, ch));
                return 1;
            }
        } catch (Throwable t) {
            logger.warn("Failed to create a new channel from an accepted socket.", t);

            try {
                ch.close();
            } catch (Throwable t2) {
                logger.warn("Failed to close a socket.", t2);
            }
        }

        return 0;
    }
    // io.netty.channel.socket.nio.NioSocketChannel#NioSocketChannel
    /**
     * Create a new instance
     *
     * @param parent    the {@link Channel} which created this instance or {@code null} if it was created by the user
     * @param socket    the {@link SocketChannel} which will be used
     */
    public NioSocketChannel(Channel parent, SocketChannel socket) {
        // 在父类中处理事件监听
        super(parent, socket);
        config = new NioSocketChannelConfig(this, socket.socket());
    }
    // io.netty.channel.nio.AbstractNioByteChannel#AbstractNioByteChannel
    /**
     * Create a new instance
     *
     * @param parent            the parent {@link Channel} by which this instance was created. May be {@code null}
     * @param ch                the underlying {@link SelectableChannel} on which it operates
     */
    protected AbstractNioByteChannel(Channel parent, SelectableChannel ch) {
        // 注册 OP_READ 事件
        super(parent, ch, SelectionKey.OP_READ);
    } 
  
 

  ok, 说回childGroup处理事件流中。因大家都是 NioEventLoopGroup, 所以创建的eventloop自然都是一样的。即都会处理io事件和task运行。回顾下上节的processSelectedKey()操作:

    // io.netty.channel.nio.NioEventLoop#processSelectedKey(java.nio.channels.SelectionKey, io.netty.channel.nio.AbstractNioChannel)
    private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
        final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
        if (!k.isValid()) {
            final EventLoop eventLoop;
            try {
                eventLoop = ch.eventLoop();
            } catch (Throwable ignored) {
                // If the channel implementation throws an exception because there is no event loop, we ignore this
                // because we are only trying to determine if ch is registered to this event loop and thus has authority
                // to close ch.
                return;
            }
            // Only close ch if ch is still registered to this EventLoop. ch could have deregistered from the event loop
            // and thus the SelectionKey could be cancelled as part of the deregistration process, but the channel is
            // still healthy and should not be closed.
            // See https://github.com/netty/netty/issues/5125
            if (eventLoop != this || eventLoop == null) {
                return;
            }
            // close the channel if the key is not valid anymore
            unsafe.close(unsafe.voidPromise());
            return;
        }

        try {
            int readyOps = k.readyOps();
            // We first need to call finishConnect() before try to trigger a read(...) or write(...) as otherwise
            // the NIO JDK channel implementation may throw a NotYetConnectedException.
            if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
                // remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking
                // See https://github.com/netty/netty/issues/924
                int ops = k.interestOps();
                ops &= ~SelectionKey.OP_CONNECT;
                k.interestOps(ops);

                unsafe.finishConnect();
            }

            // Process OP_WRITE first as we may be able to write some queued buffers and so free memory.
            if ((readyOps & SelectionKey.OP_WRITE) != 0) {
                // Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write
                ch.unsafe().forceFlush();
            }

            // Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead
            // to a spin loop
            if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
                // 走不一样的 unsafe 实现
                unsafe.read();
            }
        } catch (CancelledKeyException ignored) {
            unsafe.close(unsafe.voidPromise());
        }
    }

        // io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read
        @Override
        public final void read() {
            final ChannelConfig config = config();
            // 判断是否终止读数据,比如socket关闭等原因
            if (shouldBreakReadReady(config)) {
                clearReadPending();
                return;
            }
            // step1. 环境准备,pipeline, allocator...
            // 这里的 pipeline 就是我们自定义传入的各种handler了
            final ChannelPipeline pipeline = pipeline();
            final ByteBufAllocator allocator = config.getAllocator();
            final RecvByteBufAllocator.Handle allocHandle = recvBufAllocHandle();
            allocHandle.reset(config);

            ByteBuf byteBuf = null;
            boolean close = false;
            try {
                do {
                    // 每次循环读取数据时,都进行重新内存分配,默认分配 1024的byte内存
                    byteBuf = allocHandle.allocate(allocator);
                    // step2. 将数据读取放入 byteBuf 中, 并由 allocHandle 记录读取的数据
                    allocHandle.lastBytesRead(doReadBytes(byteBuf));
                    // 当数据读取完成或者进行close时,会读取 -1
                    if (allocHandle.lastBytesRead() <= 0) {
                        // nothing was read. release the buffer.
                        byteBuf.release();
                        byteBuf = null;
                        close = allocHandle.lastBytesRead() < 0;
                        if (close) {
                            // There is nothing left to read as we received an EOF.
                            readPending = false;
                        }
                        break;
                    }
                    // 读取数据记录次数 +1
                    allocHandle.incMessagesRead(1);
                    readPending = false;
                    // step3. 触发pipeline 的channelRead() 事件
                    pipeline.fireChannelRead(byteBuf);
                    byteBuf = null;
                } while (allocHandle.continueReading());

                allocHandle.readComplete();
                // 触发 channelReadComplete 事件,传播
                pipeline.fireChannelReadComplete();

                if (close) {
                    closeOnRead(pipeline);
                }
            } catch (Throwable t) {
                handleReadException(pipeline, byteBuf, t, close, allocHandle);
            } finally {
                // Check if there is a readPending which was not processed yet.
                // This could be for two reasons:
                // * The user called Channel.read() or ChannelHandlerContext.read() in channelRead(...) method
                // * The user called Channel.read() or ChannelHandlerContext.read() in channelReadComplete(...) method
                //
                // See https://github.com/netty/netty/issues/2254
                if (!readPending && !config.isAutoRead()) {
                    removeReadOp();
                }
            }
        }
    }

  以上,就是 childGroup 处理 io 事件的基本过程了。总体和acceptor的差不多,这也是netty抽象得比较合理的地方,所有地方都可以套用同一个模式。

    1. 准备环境,获取pipeline,配置config分配内存;
    2. doReadBytes() 读取数据buffer, 最大读取1024字节;
    3. 读取完成后记录并触发pipeline下游处理本次的channelRead()事件,保证各handler都有机会处理该部分数据;
    4. 只要数据没读取完,且没有超过最大数据量限制,循环处理2/3步骤;
    5. 总体触发一次 channelReadComplete 事件,并同理在pipeline中传播;
    6. 异常处理,close处理;

  pipeline 的传播方式, 前面我们已经见识过了,范式就是:read() 作为入站事件, 从head开始传播,依次调用各handler的channelRead()方法,直到链尾。

  接下来我们就其中几个关键的步骤看下,netty都是如何实现的。

 

3.1 doReadBytes 读取socket数据

    // 想想应该都能知道,就是从socket中将buffer读取存入到 byteBuf 中
    // io.netty.channel.socket.nio.NioSocketChannel#doReadBytes
    @Override
    protected int doReadBytes(ByteBuf byteBuf) throws Exception {
        final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
        allocHandle.attemptedBytesRead(byteBuf.writableBytes());
        // 获取 SocketChannel, 然后读取其中的数据, 写入 byteBuf 中,也是一个从内核到heap的一个拷贝过程
        return byteBuf.writeBytes(javaChannel(), allocHandle.attemptedBytesRead());
    }
    // io.netty.buffer.AbstractByteBuf#writeBytes
    @Override
    public int writeBytes(ScatteringByteChannel in, int length) throws IOException {
        ensureWritable(length);
        int writtenBytes = setBytes(writerIndex, in, length);
        // 保证写指针的同步
        if (writtenBytes > 0) {
            writerIndex += writtenBytes;
        }
        return writtenBytes;
    }
    // io.netty.buffer.PooledUnsafeDirectByteBuf#setBytes
    @Override
    public int setBytes(int index, ScatteringByteChannel in, int length) throws IOException {
        checkIndex(index, length);
        // 获取 ByteBuf 的共享变量,设值后 ByteBuf 可共享到
        // DirectByteBuffer 就体现在这里
        ByteBuffer tmpBuf = internalNioBuffer();
        index = idx(index);
        tmpBuf.clear().position(index).limit(index + length);
        try {
            // 从 socketChannel 中读取数据到 tmpBuf 中,
            // 此处看起来是存在内存拷贝,但实际上被使用直接内存时,并不会新建,而直接共用内核中内存数据即可
            return in.read(tmpBuf);
        } catch (ClosedChannelException ignored) {
            return -1;
        }
    }

  以上就是socket数据的读取过程了,总体可以描述为内核内存到java堆内存的拷贝过程(当然具体实现方式是另一回事)。

  数据读取完成后(可能是部分),就会交pipeline处理这部分数据,head -> handler... -> tail 的过程。我们还是一个具体的 netty提供的一个解码的实现:

 

3.2 netty解码实现1 byteToMsg

  就是一个 channelRead 处理过程 。

    // io.netty.handler.codec.ByteToMessageDecoder#channelRead
    @Override
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
        if (msg instanceof ByteBuf) {
            CodecOutputList out = CodecOutputList.newInstance();
            try {
                ByteBuf data = (ByteBuf) msg;
                first = cumulation == null;
                // 如果是第一次进来,则直接赋值data, 后续则附加到 cumulation 中,以达到连接字节的作用
                // 一般每个连接进来之后,会创建一个 Decoder, 后续处理数据就会都会存在连接总是,但总体来说都是线程安全的
                if (first) {
                    cumulation = data;
                } else {
                    cumulation = cumulator.cumulate(ctx.alloc(), cumulation, data);
                }
                // 调用decode方法,将byte转换为string
                callDecode(ctx, cumulation, out);
            } catch (DecoderException e) {
                throw e;
            } catch (Exception e) {
                throw new DecoderException(e);
            } finally {
                if (cumulation != null && !cumulation.isReadable()) {
                    numReads = 0;
                    // 释放buffer
                    cumulation.release();
                    cumulation = null;
                } else if (++ numReads >= discardAfterReads) {
                    // We did enough reads already try to discard some bytes so we not risk to see a OOME.
                    // See https://github.com/netty/netty/issues/4275
                    numReads = 0;
                    discardSomeReadBytes();
                }

                int size = out.size();
                decodeWasNull = !out.insertSinceRecycled();
                // 通知下游数据到来,依次遍历out的数据调用下游
                fireChannelRead(ctx, out, size);
                out.recycle();
            }
        } else {
            ctx.fireChannelRead(msg);
        }
    }

    // io.netty.handler.codec.ByteToMessageDecoder#callDecode
    /**
     * Called once data should be decoded from the given {@link ByteBuf}. This method will call
     * {@link #decode(ChannelHandlerContext, ByteBuf, List)} as long as decoding should take place.
     *
     * @param ctx           the {@link ChannelHandlerContext} which this {@link ByteToMessageDecoder} belongs to
     * @param in            the {@link ByteBuf} from which to read data
     * @param out           the {@link List} to which decoded messages should be added
     */
    protected void callDecode(ChannelHandlerContext ctx, ByteBuf in, List out) {
        try {
            while (in.isReadable()) {
                int outSize = out.size();
                // 处理遗留数据
                if (outSize > 0) {
                    // out中有数据,则重新触发 channelRead() 以使下游可感知该数据
                    fireChannelRead(ctx, out, outSize);
                    out.clear();

                    // Check if this handler was removed before continuing with decoding.
                    // If it was removed, it is not safe to continue to operate on the buffer.
                    //
                    // See:
                    // - https://github.com/netty/netty/issues/4635
                    if (ctx.isRemoved()) {
                        break;
                    }
                    outSize = 0;
                }

                int oldInputLength = in.readableBytes();
                // 调用解码方法,对对in数据进行处理,并必要情况下输出结果到 out 中
                decodeRemovalReentryProtection(ctx, in, out);

                // Check if this handler was removed before continuing the loop.
                // If it was removed, it is not safe to continue to operate on the buffer.
                //
                // See https://github.com/netty/netty/issues/1664
                if (ctx.isRemoved()) {
                    break;
                }
                // 没有读取到数据,或者未满足输出数据的要求(如读取到半包),前后的 out 大小相等
                if (outSize == out.size()) {
                    if (oldInputLength == in.readableBytes()) {
                        break;
                    } else {
                        continue;
                    }
                }
                // 读取完成后, readableBytes() 一般会变为0
                if (oldInputLength == in.readableBytes()) {
                    throw new DecoderException(
                            StringUtil.simpleClassName(getClass()) +
                                    ".decode() did not read anything but decoded a message.");
                }

                if (isSingleDecode()) {
                    break;
                }
            }
        } catch (DecoderException e) {
            throw e;
        } catch (Exception cause) {
            throw new DecoderException(cause);
        }
    }

    // io.netty.handler.codec.ByteToMessageDecoder#decodeRemovalReentryProtection
    /**
     * Decode the from one {@link ByteBuf} to an other. This method will be called till either the input
     * {@link ByteBuf} has nothing to read when return from this method or till nothing was read from the input
     * {@link ByteBuf}.
     *
     * @param ctx           the {@link ChannelHandlerContext} which this {@link ByteToMessageDecoder} belongs to
     * @param in            the {@link ByteBuf} from which to read data
     * @param out           the {@link List} to which decoded messages should be added
     * @throws Exception    is thrown if an error occurs
     */
    final void decodeRemovalReentryProtection(ChannelHandlerContext ctx, ByteBuf in, List out)
            throws Exception {
        decodeState = STATE_CALLING_CHILD_DECODE;
        try {
            // 将byte数据转换为想要的类型,即我们自定义处理的地方
            decode(ctx, in, out);
        } finally {
            boolean removePending = decodeState == STATE_HANDLER_REMOVED_PENDING;
            decodeState = STATE_INIT;
            if (removePending) {
                handlerRemoved(ctx);
            }
        }
    }
// 比如如下实现,将byte转换为string
public class MessageDecoder extends ByteToMessageDecoder {

    //从ByteBuf中获取字节,转换成对象,写入到List中
    @Override
    protected void decode(ChannelHandlerContext ctx, ByteBuf buffer, List out) throws Exception {
        buffer.markReaderIndex();
        byte[] data=new byte[buffer.readableBytes()];
        buffer.readBytes(data);
        out.add(new String(data,"UTF-8"));
    }
}
    
    // 触发pipeline下游handler处理数据
    // io.netty.handler.codec.ByteToMessageDecoder#fireChannelRead
    /**
     * Get {@code numElements} out of the {@link CodecOutputList} and forward these through the pipeline.
     */
    static void fireChannelRead(ChannelHandlerContext ctx, CodecOutputList msgs, int numElements) {
        for (int i = 0; i < numElements; i ++) {
            ctx.fireChannelRead(msgs.getUnsafe(i));
        }
    } 
  
 

  总结下对数据的解码过程:

    1. 接收外部读取的byteBuf;
    2. 判断数据是否足够进行解码,如果解码成功将其添加到out中;
    3. 将out的数据传入到pipeline下游,进行业务处理;
    4. 释放已读取的buffer数据,进入下一次数据读取准备;

  对于短连接请求,每次都会有新的encoder, decoder, 但对于长连接而言, 则会复用之前的handler, 从而也需要处理好各数据的分界问题,即自定义协议时得够严谨以避免误读。

 

4. write 数据的实现

  write 数据是向对端进行数据输出的过程,一般有 write, 和 flush 过程, write 仅向应用缓冲中写入数据,在合适的时候flush到对端。而writeAndFlush则表示立即输出数据到对端。有 DefaultChannelHandlerContext 的实现:

    // io.netty.channel.AbstractChannelHandlerContext#writeAndFlush
    @Override
    public ChannelFuture writeAndFlush(Object msg) {
        return writeAndFlush(msg, newPromise());
    }
    // io.netty.channel.AbstractChannelHandlerContext#newPromise
    @Override
    public ChannelPromise newPromise() {
        // channel 会从pipeline中获取, executor 即channel中绑定的io线程
        return new DefaultChannelPromise(channel(), executor());
    }
    // io.netty.channel.AbstractChannelHandlerContext#writeAndFlush
    @Override
    public ChannelFuture writeAndFlush(Object msg, ChannelPromise promise) {
        if (msg == null) {
            throw new NullPointerException("msg");
        }
        // channel 等信息校验
        if (isNotValidPromise(promise, true)) {
            ReferenceCountUtil.release(msg);
            // cancelled
            return promise;
        }
        // 写数据, flush=true
        write(msg, true, promise);

        return promise;
    }

    private void write(Object msg, boolean flush, ChannelPromise promise) {
        // write 为出站事件, 从当前节点查找 出站handler, 直到head
        AbstractChannelHandlerContext next = findContextOutbound();
        final Object m = pipeline.touch(msg, next);
        EventExecutor executor = next.executor();
        if (executor.inEventLoop()) {
            if (flush) {
                // 下一节点处理
                next.invokeWriteAndFlush(m, promise);
            } else {
                next.invokeWrite(m, promise);
            }
        } else {
            AbstractWriteTask task;
            if (flush) {
                task = WriteAndFlushTask.newInstance(next, m, promise);
            }  else {
                task = WriteTask.newInstance(next, m, promise);
            }
            safeExecute(executor, task, promise, m);
        }
    }

    // io.netty.channel.AbstractChannelHandlerContext#invokeWriteAndFlush
    private void invokeWriteAndFlush(Object msg, ChannelPromise promise) {
        if (invokeHandler()) {
            // step1. write 事件写数据到缓冲区
            invokeWrite0(msg, promise);
            // step2. flush 事件写缓冲区数据到对端
            invokeFlush0();
        } else {
            writeAndFlush(msg, promise);
        }
    }

 

4.1 netty write 的事件如何处理

  write 含义明确,写数据到xxx。那这是如何实现的呢?(仅从应用层分析,咱们就不讨论底层TCP协议了)

  实际上,它就是write事件的传播过程,最终由 head 节点处理。

    private void invokeWrite0(Object msg, ChannelPromise promise) {
        try {
            // write 传递
            ((ChannelOutboundHandler) handler()).write(this, msg, promise);
        } catch (Throwable t) {
            notifyOutboundHandlerException(t, promise);
        }
    }
    
    // 此处由 encoder 进行处理
    // io.netty.handler.codec.MessageToByteEncoder#write
    @Override
    public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
        ByteBuf buf = null;
        try {
            if (acceptOutboundMessage(msg)) {
                @SuppressWarnings("unchecked")
                I cast = (I) msg;
                // 分配byteBuf, 处理输出,和读取一样,可以使用 DirectByteBuffer
                buf = allocateBuffer(ctx, cast, preferDirect);
                try {
                    // 调用业务实现的 encode 方法,写数据到 buf 中
                    encode(ctx, cast, buf);
                } finally {
                    ReferenceCountUtil.release(cast);
                }

                if (buf.isReadable()) {
                    // 如果被写入数据到 buf 中,则传播write事件
                    // 直到head 完成
                    ctx.write(buf, promise);
                } else {
                    buf.release();
                    ctx.write(Unpooled.EMPTY_BUFFER, promise);
                }
                buf = null;
            } else {
                ctx.write(msg, promise);
            }
        } catch (EncoderException e) {
            throw e;
        } catch (Throwable e) {
            throw new EncoderException(e);
        } finally {
            if (buf != null) {
                buf.release();
            }
        }
    }

    @Override
    public ByteBuf ioBuffer() {
        if (PlatformDependent.hasUnsafe()) {
            return directBuffer(DEFAULT_INITIAL_CAPACITY);
        }
        return heapBuffer(DEFAULT_INITIAL_CAPACITY);
    }

        // head 节点会处理具体的写入细节
        @Override
        public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
            unsafe.write(msg, promise);
        }
        // io.netty.channel.AbstractChannel.AbstractUnsafe#write
        @Override
        public final void write(Object msg, ChannelPromise promise) {
            assertEventLoop();

            ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
            if (outboundBuffer == null) {
                // If the outboundBuffer is null we know the channel was closed and so
                // need to fail the future right away. If it is not null the handling of the rest
                // will be done in flush0()
                // See https://github.com/netty/netty/issues/2362
                safeSetFailure(promise, WRITE_CLOSED_CHANNEL_EXCEPTION);
                // release message now to prevent resource-leak
                ReferenceCountUtil.release(msg);
                return;
            }

            int size;
            try {
                // 处理为 DirectByteBuffer
                msg = filterOutboundMessage(msg);
                size = pipeline.estimatorHandle().size(msg);
                if (size < 0) {
                    size = 0;
                }
            } catch (Throwable t) {
                safeSetFailure(promise, t);
                ReferenceCountUtil.release(msg);
                return;
            }
            // 添加数据到 outboundBuffer 中,即输出缓冲区
            outboundBuffer.addMessage(msg, size, promise);
        }

    // io.netty.channel.nio.AbstractNioByteChannel#filterOutboundMessage
    @Override
    protected final Object filterOutboundMessage(Object msg) {
        if (msg instanceof ByteBuf) {
            ByteBuf buf = (ByteBuf) msg;
            if (buf.isDirect()) {
                return msg;
            }

            return newDirectBuffer(buf);
        }

        if (msg instanceof FileRegion) {
            return msg;
        }

        throw new UnsupportedOperationException(
                "unsupported message type: " + StringUtil.simpleClassName(msg) + EXPECTED_TYPES);
    }

    // io.netty.channel.ChannelOutboundBuffer#addMessage
    /**
     * Add given message to this {@link ChannelOutboundBuffer}. The given {@link ChannelPromise} will be notified once
     * the message was written.
     */
    public void addMessage(Object msg, int size, ChannelPromise promise) {
        Entry entry = Entry.newInstance(msg, size, total(msg), promise);
        if (tailEntry == null) {
            flushedEntry = null;
        } else {
            Entry tail = tailEntry;
            tail.next = entry;
        }
        tailEntry = entry;
        if (unflushedEntry == null) {
            unflushedEntry = entry;
        }

        // increment pending bytes after adding message to the unflushed arrays.
        // See https://github.com/netty/netty/issues/1619
        incrementPendingOutboundBytes(entry.pendingSize, false);
    }
    private void incrementPendingOutboundBytes(long size, boolean invokeLater) {
        if (size == 0) {
            return;
        }

        long newWriteBufferSize = TOTAL_PENDING_SIZE_UPDATER.addAndGet(this, size);
        if (newWriteBufferSize > channel.config().getWriteBufferHighWaterMark()) {
            // 超出一定数量后,需要主动flush
            setUnwritable(invokeLater);
        }
    }
    private void setUnwritable(boolean invokeLater) {
        for (;;) {
            final int oldValue = unwritable;
            final int newValue = oldValue | 1;
            if (UNWRITABLE_UPDATER.compareAndSet(this, oldValue, newValue)) {
                if (oldValue == 0 && newValue != 0) {
                    fireChannelWritabilityChanged(invokeLater);
                }
                break;
            }
        }
    }

  即write只向 outboundBuffer中写入数据,应该是比较快速的。但它也是经历了 pipeline 的事件流的层层处理,如果想在这其中做点什么,也是比较方便的。

 

4.2 flush 事件流处理

  上面一步写入数据到 outboundBuffer 中,并未向对端响应数据,需要进行 flush 对端才能感知到。

    private void invokeWriteAndFlush(Object msg, ChannelPromise promise) {
        if (invokeHandler()) {
            invokeWrite0(msg, promise);
            invokeFlush0();
        } else {
            writeAndFlush(msg, promise);
        }
    }
    // io.netty.channel.AbstractChannelHandlerContext#invokeFlush0
    private void invokeFlush0() {
        try {
            // 由 MessageEncoder 处理
            ((ChannelOutboundHandler) handler()).flush(this);
        } catch (Throwable t) {
            notifyHandlerException(t);
        }
    }
    // io.netty.channel.ChannelOutboundHandlerAdapter#flush
    /**
     * Calls {@link ChannelHandlerContext#flush()} to forward
     * to the next {@link ChannelOutboundHandler} in the {@link ChannelPipeline}.
     *
     * Sub-classes may override this method to change behavior.
     */
    @Override
    public void flush(ChannelHandlerContext ctx) throws Exception {
        ctx.flush();
    }
    // io.netty.channel.AbstractChannelHandlerContext#flush
    @Override
    public ChannelHandlerContext flush() {
        // 出站handler, 依次调用, 直到head
        final AbstractChannelHandlerContext next = findContextOutbound();
        EventExecutor executor = next.executor();
        if (executor.inEventLoop()) {
            next.invokeFlush();
        } else {
            Runnable task = next.invokeFlushTask;
            if (task == null) {
                next.invokeFlushTask = task = new Runnable() {
                    @Override
                    public void run() {
                        next.invokeFlush();
                    }
                };
            }
            safeExecute(executor, task, channel().voidPromise(), null);
        }

        return this;
    }
    private void invokeFlush() {
        if (invokeHandler()) {
            // 遍历 pipeline
            invokeFlush0();
        } else {
            flush();
        }
    }
        // head 节点负责最终的数据flush
        // io.netty.channel.DefaultChannelPipeline.HeadContext#flush
        @Override
        public void flush(ChannelHandlerContext ctx) throws Exception {
            // unsafe 为 NioSocketChannel$NioSocketChannelUnsafe
            unsafe.flush();
        }
        // io.netty.channel.AbstractChannel.AbstractUnsafe#flush
        @Override
        public final void flush() {
            assertEventLoop();

            ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
            if (outboundBuffer == null) {
                return;
            }

            outboundBuffer.addFlush();
            flush0();
        }

    // io.netty.channel.ChannelOutboundBuffer#addFlush
    /**
     * Add a flush to this {@link ChannelOutboundBuffer}. This means all previous added messages are marked as flushed
     * and so you will be able to handle them.
     */
    public void addFlush() {
        // There is no need to process all entries if there was already a flush before and no new messages
        // where added in the meantime.
        //
        // See https://github.com/netty/netty/issues/2577
        // 使用 unflushedEntry 保存要被 flush 的数据
        Entry entry = unflushedEntry;
        if (entry != null) {
            if (flushedEntry == null) {
                // there is no flushedEntry yet, so start with the entry
                flushedEntry = entry;
            }
            do {
                flushed ++;
                if (!entry.promise.setUncancellable()) {
                    // Was cancelled so make sure we free up memory and notify about the freed bytes
                    int pending = entry.cancel();
                    decrementPendingOutboundBytes(pending, false, true);
                }
                entry = entry.next;
            } while (entry != null);

            // All flushed so reset unflushedEntry
            unflushedEntry = null;
        }
    }
        // io.netty.channel.nio.AbstractNioChannel.AbstractNioUnsafe#flush0
        @Override
        protected final void flush0() {
            // Flush immediately only when there's no pending flush.
            // If there's a pending flush operation, event loop will call forceFlush() later,
            // and thus there's no need to call it now.
            // 第一次进入此处,将会尝试立即向socket中写入数据或者立即注册一个 OP_WRITE 事件,以触发写
            if (!isFlushPending()) {
                super.flush0();
            }
        }
        private boolean isFlushPending() {
            SelectionKey selectionKey = selectionKey();
            return selectionKey.isValid() && (selectionKey.interestOps() & SelectionKey.OP_WRITE) != 0;
        }
        // io.netty.channel.AbstractChannel.AbstractUnsafe#flush0
        @SuppressWarnings("deprecation")
        protected void flush0() {
            if (inFlush0) {
                // Avoid re-entrance
                return;
            }

            final ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
            if (outboundBuffer == null || outboundBuffer.isEmpty()) {
                return;
            }

            inFlush0 = true;

            // Mark all pending write requests as failure if the channel is inactive.
            if (!isActive()) {
                try {
                    if (isOpen()) {
                        outboundBuffer.failFlushed(FLUSH0_NOT_YET_CONNECTED_EXCEPTION, true);
                    } else {
                        // Do not trigger channelWritabilityChanged because the channel is closed already.
                        outboundBuffer.failFlushed(FLUSH0_CLOSED_CHANNEL_EXCEPTION, false);
                    }
                } finally {
                    inFlush0 = false;
                }
                return;
            }

            try {
                doWrite(outboundBuffer);
            } catch (Throwable t) {
                if (t instanceof IOException && config().isAutoClose()) {
                    /**
                     * Just call {@link #close(ChannelPromise, Throwable, boolean)} here which will take care of
                     * failing all flushed messages and also ensure the actual close of the underlying transport
                     * will happen before the promises are notified.
                     *
                     * This is needed as otherwise {@link #isActive()} , {@link #isOpen()} and {@link #isWritable()}
                     * may still return {@code true} even if the channel should be closed as result of the exception.
                     */
                    close(voidPromise(), t, FLUSH0_CLOSED_CHANNEL_EXCEPTION, false);
                } else {
                    try {
                        shutdownOutput(voidPromise(), t);
                    } catch (Throwable t2) {
                        close(voidPromise(), t2, FLUSH0_CLOSED_CHANNEL_EXCEPTION, false);
                    }
                }
            } finally {
                inFlush0 = false;
            }
        }

    // io.netty.channel.socket.nio.NioSocketChannel#doWrite
    @Override
    protected void doWrite(ChannelOutboundBuffer in) throws Exception {
        SocketChannel ch = javaChannel();
        int writeSpinCount = config().getWriteSpinCount();
        do {
            if (in.isEmpty()) {
                // All written so clear OP_WRITE
                clearOpWrite();
                // Directly return here so incompleteWrite(...) is not called.
                return;
            }

            // Ensure the pending writes are made of ByteBufs only.
            int maxBytesPerGatheringWrite = ((NioSocketChannelConfig) config).getMaxBytesPerGatheringWrite();
            ByteBuffer[] nioBuffers = in.nioBuffers(1024, maxBytesPerGatheringWrite);
            int nioBufferCnt = in.nioBufferCount();

            // Always us nioBuffers() to workaround data-corruption.
            // See https://github.com/netty/netty/issues/2761
            switch (nioBufferCnt) {
                case 0:
                    // We have something else beside ByteBuffers to write so fallback to normal writes.
                    writeSpinCount -= doWrite0(in);
                    break;
                case 1: {
                    // Only one ByteBuf so use non-gathering write
                    // Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
                    // to check if the total size of all the buffers is non-zero.
                    ByteBuffer buffer = nioBuffers[0];
                    int attemptedBytes = buffer.remaining();
                    // 向socket中写入数据,完事,写入多少数据量返回,以便判定是否写完
                    final int localWrittenBytes = ch.write(buffer);
                    if (localWrittenBytes <= 0) {
                        incompleteWrite(true);
                        return;
                    }
                    adjustMaxBytesPerGatheringWrite(attemptedBytes, localWrittenBytes, maxBytesPerGatheringWrite);
                    in.removeBytes(localWrittenBytes);
                    // 减少可写次数,超过最大可写次数,退出
                    --writeSpinCount;
                    break;
                }
                default: {
                    // Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
                    // to check if the total size of all the buffers is non-zero.
                    // We limit the max amount to int above so cast is safe
                    long attemptedBytes = in.nioBufferSize();
                    final long localWrittenBytes = ch.write(nioBuffers, 0, nioBufferCnt);
                    if (localWrittenBytes <= 0) {
                        incompleteWrite(true);
                        return;
                    }
                    // Casting to int is safe because we limit the total amount of data in the nioBuffers to int above.
                    adjustMaxBytesPerGatheringWrite((int) attemptedBytes, (int) localWrittenBytes,
                            maxBytesPerGatheringWrite);
                    in.removeBytes(localWrittenBytes);
                    --writeSpinCount;
                    break;
                }
            }
        } while (writeSpinCount > 0);
        // 数据未写完,注册 OP_WRITE 事件
        incompleteWrite(writeSpinCount < 0);
    }
    protected final void clearOpWrite() {
        final SelectionKey key = selectionKey();
        // Check first if the key is still valid as it may be canceled as part of the deregistration
        // from the EventLoop
        // See https://github.com/netty/netty/issues/2104
        if (!key.isValid()) {
            return;
        }
        final int interestOps = key.interestOps();
        // 取消写事件监听
        if ((interestOps & SelectionKey.OP_WRITE) != 0) {
            key.interestOps(interestOps & ~SelectionKey.OP_WRITE);
        }
    }

    // 获取 nioBufers ----------------------------------------------------
    /**
     * Returns an array of direct NIO buffers if the currently pending messages are made of {@link ByteBuf} only.
     * {@link #nioBufferCount()} and {@link #nioBufferSize()} will return the number of NIO buffers in the returned
     * array and the total number of readable bytes of the NIO buffers respectively.
     * 

* Note that the returned array is reused and thus should not escape * {@link AbstractChannel#doWrite(ChannelOutboundBuffer)}. * Refer to {@link NioSocketChannel#doWrite(ChannelOutboundBuffer)} for an example. *

*
@param maxCount The maximum amount of buffers that will be added to the return value. * @param maxBytes A hint toward the maximum number of bytes to include as part of the return value. Note that this * value maybe exceeded because we make a best effort to include at least 1 {@link ByteBuffer} * in the return value to ensure write progress is made. */ public ByteBuffer[] nioBuffers(int maxCount, long maxBytes) { assert maxCount > 0; assert maxBytes > 0; long nioBufferSize = 0; int nioBufferCount = 0; final InternalThreadLocalMap threadLocalMap = InternalThreadLocalMap.get(); ByteBuffer[] nioBuffers = NIO_BUFFERS.get(threadLocalMap); Entry entry = flushedEntry; while (isFlushedEntry(entry) && entry.msg instanceof ByteBuf) { if (!entry.cancelled) { ByteBuf buf = (ByteBuf) entry.msg; final int readerIndex = buf.readerIndex(); final int readableBytes = buf.writerIndex() - readerIndex; if (readableBytes > 0) { if (maxBytes - readableBytes < nioBufferSize && nioBufferCount != 0) { // If the nioBufferSize + readableBytes will overflow maxBytes, and there is at least one entry // we stop populate the ByteBuffer array. This is done for 2 reasons: // 1. bsd/osx don't allow to write more bytes then Integer.MAX_VALUE with one writev(...) call // and so will return 'EINVAL', which will raise an IOException. On Linux it may work depending // on the architecture and kernel but to be safe we also enforce the limit here. // 2. There is no sense in putting more data in the array than is likely to be accepted by the // OS. // // See also: // - https://www.freebsd.org/cgi/man.cgi?query=write&sektion=2 // - http://linux.die.net/man/2/writev break; } nioBufferSize += readableBytes; int count = entry.count; if (count == -1) { //noinspection ConstantValueVariableUse entry.count = count = buf.nioBufferCount(); } int neededSpace = min(maxCount, nioBufferCount + count); if (neededSpace > nioBuffers.length) { nioBuffers = expandNioBufferArray(nioBuffers, neededSpace, nioBufferCount); NIO_BUFFERS.set(threadLocalMap, nioBuffers); } if (count == 1) { ByteBuffer nioBuf = entry.buf; if (nioBuf == null) { // cache ByteBuffer as it may need to create a new ByteBuffer instance if its a // derived buffer entry.buf = nioBuf = buf.internalNioBuffer(readerIndex, readableBytes); } nioBuffers[nioBufferCount++] = nioBuf; } else { ByteBuffer[] nioBufs = entry.bufs; if (nioBufs == null) { // cached ByteBuffers as they may be expensive to create in terms // of Object allocation entry.bufs = nioBufs = buf.nioBuffers(); } for (int i = 0; i < nioBufs.length && nioBufferCount < maxCount; ++i) { ByteBuffer nioBuf = nioBufs[i]; if (nioBuf == null) { break; } else if (!nioBuf.hasRemaining()) { continue; } nioBuffers[nioBufferCount++] = nioBuf; } } if (nioBufferCount == maxCount) { break; } } } entry = entry.next; } this.nioBufferCount = nioBufferCount; this.nioBufferSize = nioBufferSize; return nioBuffers; } // 未写完数据的处理: 注册OP_WRITE事件让后续eventloop处理 // io.netty.channel.nio.AbstractNioByteChannel#incompleteWrite protected final void incompleteWrite(boolean setOpWrite) { // Did not write completely. if (setOpWrite) { setOpWrite(); } else { // It is possible that we have set the write OP, woken up by NIO because the socket is writable, and then // use our write quantum. In this case we no longer want to set the write OP because the socket is still // writable (as far as we know). We will find out next time we attempt to write if the socket is writable // and set the write OP if necessary. clearOpWrite(); // Schedule flush again later so other tasks can be picked up in the meantime eventLoop().execute(flushTask); } } // io.netty.channel.nio.AbstractNioByteChannel#setOpWrite protected final void setOpWrite() { final SelectionKey key = selectionKey(); // Check first if the key is still valid as it may be canceled as part of the deregistration // from the EventLoop // See https://github.com/netty/netty/issues/2104 if (!key.isValid()) { return; } final int interestOps = key.interestOps(); // 如果数据未被写完整,则主动注册写事件监听,让 eventloop 去处理 if ((interestOps & SelectionKey.OP_WRITE) == 0) { key.interestOps(interestOps | SelectionKey.OP_WRITE); } }

  如上,写数据的过程理论都是通用的,都会先向应用缓冲中写入数据,然后再进行flush. netty 使用 DirectByteBuffer 进行写入优化,使用eventloop保证写入的完整性和及时性。

 

  本文通过netty 对网络事件的处理过程,以对通用网络io处理实现方式的理解必然有所加深。

你可能感兴趣的:(Netty(二):io请求处理过程解析)