- 从零推导线性回归:最小二乘法与梯度下降的数学原理
Echo-Nie
机器学习机器学习线性回归人工智能梯度下降数学推导
欢迎来到我的主页:【Echo-Nie】本篇文章收录于专栏【机器学习】本文所有内容相关代码都可在以下仓库中找到:Github-MachineLearning1线性回归1.1什么是线性回归线性回归是一种用来预测和分析数据之间关系的工具。它的核心思想是找到一条直线(或者一个平面),让这条直线尽可能地“拟合”已有的数据点,通过这条直线,我们可以预测新的数据。eg:假设你想预测房价,你知道房子的大小(面积)
- 机器学习入门——机器学习基本概念
四月是你的
机器学习
@机器学习什么是机器学习机器学习(MachineLearning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎简单来说机器学习就是机
- 【llm对话系统】RL强化学习的技术演进与RLHF
kakaZhui
人工智能chatgptllama
一、强化学习基础知识强化学习(ReinforcementLearning,RL)是一种机器学习方法,它通过智能体(Agent)与环境(Environment)的交互来学习如何行动以最大化累积奖励(Reward)。1.核心概念:智能体(Agent):做出决策并采取行动的学习者。环境(Environment):智能体所处的外部世界,对智能体的行动做出反应。状态(State,S):对环境当前情况的描述。
- XQuery 添加元素 和属性
fengshou1
node.js
向结果添加元素和属性正如在前面一节看到的,我们可以在结果中引用输入文件中的元素和属性:for$xindoc("books.xml")/bookstore/book/titleorderby$xreturn$x上面的XQuery表达式会在结果中引用title元素和lang属性,就像这样:EverydayItalianHarryPotterLearningXMLXQueryKickStart以上XQu
- CVPR 2024 人脸方向总汇(人脸识别、头像重建、人脸合成和3D头像等)
点云SLAM
图形图像处理深度学习计算机视觉3D人脸人脸识别头像重建
1、Face(人脸)UnsupervisedGazeRepresentationLearningfromMulti-viewFaceImagesToonerGAN:ReinforcingGANsforObfuscatingAutomatedFacialIndexingPairDETR:JointDetectionandAssociationofHumanBodiesandFacesNeuralIm
- 利用MMDetection进行模型微调和权重初始化
MickeyCV
目标检测深度学习目标检测计算机视觉python
目录模型微调修改第一处:更少的训练回合Epoch修改第二处:更小的学习率LearningRate修改第三处:使用预训练模型权重初始化实际使用案例init_cfg的具体使用规则初始化器配置汇总本文基于MMDetection官方文档,对模型微调和权重初始化进行第三方讲解。模型微调在COCO数据集上预训练的检测器可以作为其他数据集优质的预训练模型。微调超参数与默认的训练策略不同。它通常需要更小的学习率和
- 自主学习与自然语言处理的融合:实现更智能的聊天机器人
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍自主学习(autonomouslearning)是一种学习方法,它允许机器人或计算机系统在没有人类干预的情况下自行学习和改进。自主学习可以帮助机器人或计算机系统更好地适应新的环境和任务,提高其智能性和效率。自然语言处理(naturallanguageprocessing,NLP)是计算机科学和人工智能领域的一个分支,它涉及计算机如何理解、处理和生成人类语言。自主学习与自然语言处理的融合
- 蓝桥杯真题 - 翻转 - 题解
ExRoc
蓝桥杯算法c++
题目链接:https://www.lanqiao.cn/problems/3520/learning/个人评价:难度1星(满星:5)前置知识:无整体思路贪心,除了第一位跟最后一位,其它字符,每当S[i]≠T[i]S[i]\neqT[i]S[i]=T[i]时,能换则换;为什么可以贪心?因为如果某段连续的数字为101101101或者010010010,在被修改之后变为111111111或者00000
- 蓝桥杯真题 - 三国游戏 - 题解
ExRoc
蓝桥杯算法c++
题目链接:https://www.lanqiao.cn/problems/3518/learning/个人评价:难度2星(满星:5)前置知识:贪心整体思路先假设魏蜀吴中的某一个势力最终获胜的情况下,如何求出事件发生的最大数量,最后枚举三个势力获胜的情况取最大值就是答案;假设魏国最终胜利,那最好是让已发生的事件中AiA_iAi的和尽可能大于Bi+CiB_i+C_iBi+Ci的和,大得越多越优先选择让
- 智能推理的革命:DeepSeek-R1 深度解析其算法与实现
步子哥
算法人工智能
在人工智能(AI)领域,语言模型(LargeLanguageModels,LLMs)正以惊人的速度发展,变得越来越智能,能够理解和生成复杂的语言内容。然而,尽管现有的模型在许多任务上表现出色,它们在深度推理和逻辑思维方面仍有显著的提升空间。DeepSeek-R1的出现,正是为了解决这一问题,通过强化学习(ReinforcementLearning,RL)赋予语言模型更强大的推理能力,开创了LLMs
- KNOWLEDGE UNLEARNING FOR MITIGATING PRIVACY RISKS IN LANGUAGE MODELS
绒绒毛毛雨
语言模型人工智能自然语言处理
文章目录摘要1引言2相关工作2.1语言模型的隐私方法2.2机器去学习2.3语言模型中的记忆3语言模型中的知识去学习3.1方法论3.2量化语言模型的隐私风险4实验4.1模型、数据集和配置4.2主要实验4.3知识去学习的分析5结论摘要预训练语言模型(LMs)在初始预训练过程中记忆了大量知识,包括可能侵犯个人隐私和身份的信息。以往针对语言模型隐私问题的研究主要集中在数据预处理和差分隐私方法上,这两者都需
- 机器学习与分布式机器学习_经理人的机器学习–您需要知道的
cumian8165
算法神经网络大数据编程语言python
机器学习与分布式机器学习Ifyouaremanagingatechteamasaproductorprojectmanager,hereiswhatyouneedtoknowaboutmachinelearning.如果您要以产品或项目经理的身份管理技术团队,这是您需要了解的有关机器学习的知识。Machinelearninganddeeplearninghavebeenpopularbuzzwor
- Progressive learning
yore0531
深度学习人工智能计算机视觉
learnfromRestormer.Restormer:EfficientTransformerforHigh-ResolutionImageRestoration|IEEEConferencePublication|IEEEXploreProgressivelearning在小的croppatches上训练Transformer模型可能无法对全局图像统计进行编码,从而在测试时对全分辨率图像的效
- 【PLPR】Progressive Learning for Person Re-Identification with One Example
南风楠
PersonRe-IDOne-shotLearningFew-shotLearning深度学习机器学习神经网络
【PLPR】ProgressiveLearningforPersonRe-IdentificationwithOneExampleBibtexPublicinformationFieldsCodelinkMainworkKeytechnologyFrameworkDatasetResultsAlgorithmOthers论文下载:关注下方公众号,回复“PLPR”即可获得论文原文Bibtex@art
- 深度学习利用数据加载、预处理和增强数据提高模型的性能
weixin_30777913
人工智能深度学习
深度学习数据预处理是一个关键步骤,旨在提高模型的性能和准确性。通过数据加载、预处理和增强,可以显著提高深度学习模型的性能和准确性。在实际应用中,需要根据具体的数据和任务来选择合适的预处理和增强技术。以下将详细论述并举例说明如何加载、预处理和增强数据。一、数据加载在深度学习中,数据加载是第一步。这通常涉及到从各种数据源(如CSV文件、数据库、图像文件夹等)中读取数据。以DeepLearning4J(
- python广告点击率预测_常见计算广告点击率预估算法总结
weixin_39850143
python广告点击率预测
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~作者:导语:本文讨论了CTR预估模型,包括工业界使用比较广的比较经典模型和学术界最新的结合DeepLearning的一些工作。前言谈到CTR,都多多少少有些了解,尤其在互联网广告这块,简而言之,就是给某个网络服务使用者推送一个广告,该广告被点击的概率,这个问题难度简单到街边算命随口告诉你今天适不适合娶亲、适不适合搬迁一样,也可以复杂到拿到
- Django学习笔记
mengmwng
Djangodjango学习笔记
学习视频来源:最新Python的web开发全家桶代码仓库:https://gitee.com/m_engmeng/django-learning1.创建项目Django中项目会有一些默认的文件和文件夹1.1在终端打开终端进入某个目录(项目放在哪里)输入命令——创建项目(最后一个参数是项目名)django-adminstartprojectmysite继续输入——创建app(最后一个参数是app所处
- How can I fix my Flask server‘s 405 error that includes OpenAi api?
营赢盈英
AIaipythonjavascriptflaskopenaiapi
题意:解决包含OpenAIAPI的Flask服务器中出现的405错误(MethodNotAllowed,即方法不允许)问题背景:I'mtryingtoaddanAPItomywebpageandhaveneverusedanyFlaskserverbefore,IhaveneverusedJavascripttoosothisisacompletelybrandnewlearningexperie
- tensorlow中tensorboard可视化展示训练过程
张登杰踩
tensorflowtensorboardtensorflowmnist神经网络
importtensorflowastffromtensorflow.examples.tutorials.mnistimportinput_datamax_steps=1000#训练步数learning_rate=0.001#设置学习率dropout=0.9#神经元保留比例data_dir='./MNIST_data'#数据存放路径#minist数据集下载链接:https://pan.baidu
- 自动驾驶中的虚实迁移学习:降低对真实世界数据的依赖
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
自动驾驶,迁移学习,虚实环境,数据效率,深度学习,强化学习1.背景介绍自动驾驶技术作为人工智能领域的重要应用之一,其发展离不开海量真实世界驾驶数据。然而,收集和标注真实世界驾驶数据成本高昂,且存在安全隐患。因此,如何降低对真实世界数据的依赖,提高自动驾驶系统的训练效率和安全性,成为一个亟待解决的关键问题。虚实迁移学习(Virtual-to-RealTransferLearning)作为一种新兴的机
- 【cs.AI】25.1.11 arxiv更新速递
hinmer
arxivcs.AI每日更新chatgptgpt人工智能自然语言处理自动驾驶深度学习aigc
25.1.1012:00-25.1.1112:00共更新75篇—第1篇----=====MultilingualPerformanceofaMultimodalArtificialIntelligenceSystemonMultisubjectPhysicsConceptInventories关键词:多语言,多模态,人工智能,GPT-4,物理教育,物理概念清单链接1摘要:我们研究了一种基于大型语言
- 数据库的三级模式结构与两级映像
凭君语未可
数据库数据库oracle
三级模式结构与两级映像什么是数据库的三级模式结构?1.模式(ConceptualSchema,概念模式)定义特点作用示例2.外模式(ExternalSchema,外部模式)定义特点作用举例3.内模式(InternalSchema,内部模式)定义特点作用举例三级模式结构的关系和映射1.外模式与模式的映射外模式与模式的关系映射机制举例电商系统中的用户视图与模式权限控制:映射的意义2.模式与内模式的映射
- 1.2 Trade and Conflict in Early Modern Asia
EricWang1358
GEC开发语言
Trading-PostEmpires(贸易据点帝国)KeyConcepts(关键概念):PortugueseTradingPosts(葡萄牙的贸易据点):Inthe15thcentury,Portugal(葡萄牙)wasthefirstEuropeancountrytoestablishatrading-postempire(贸易据点帝国).Unlikeotherempires,Portugal
- 强化学习代码实践1.DDQN:在CartPole游戏中实现 Double DQN
洪小帅
游戏pythongympytorch深度学习
强化学习代码实践1.DDQN:在CartPole游戏中实现DoubleDQN1.导入依赖2.定义Q网络3.创建Agent4.训练过程5.解释6.调整超参数在CartPole游戏中实现DoubleDQN(DDQN)训练网络时,我们需要构建一个使用两个Q网络(一个用于选择动作,另一个用于更新目标)的方法。DoubleDQN通过引入目标网络来减少Q-learning中过度估计的偏差。下面是一个基于PyT
- mtls加密双向认证
sun007700
安全sslhttpshttp
https://www.cloudflare.com/en-gb/learning/access-management/what-is-mutual-tls/HTTPS双向认证(MutualTLSauthentication)-API网关-阿里云SSL/TLS双向认证(一)--SSL/TLS工作原理_ustccw-CSDN博客_双向认证SSL/TSL双向认证过程与Wireshark抓包分析_区块链
- DeepSpeed 常见问题解决方案
申晓容Lucille
DeepSpeed常见问题解决方案DeepSpeedDeepSpeedisadeeplearningoptimizationlibrarythatmakesdistributedtrainingandinferenceeasy,efficient,andeffective.项目地址:https://gitcode.com/gh_mirrors/de/DeepSpeed1.项目基础介绍和主要编程语言
- Flink系列-2、Flink架构体系
技术武器库
大数据专栏flink架构jvm
版权声明:本文为博主原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接和本声明。大数据系列文章目录官方网址:https://flink.apache.org/学习资料:https://flink-learning.org.cn/目录Flink中的重要角⾊Flink数据流编程模型Libraries支持Flink集群搭建Local本地模式(开发测试)Standalone-伪分布环境(开
- Pocsuite3渗透测试框架编写POC和EXP脚本
wespten
全栈网络安全渗透测试代码审计网络安全工具开发大数据
在我们的日常渗透测试中,经常挖掘到一些漏洞,但是我们一般使用挖掘工具或者手工判断的时候,不好确定是不是真的存在这么一个漏洞,因此POC脚本就应运而生了。POC全称是ProofofConcept,中文译作概念验证。它是专门为了验证漏洞是否真的存在的脚本。而EXP全称是Exploit,中文译作漏洞利用程序。它是对POC验证结果的一种漏洞利用脚本。因为市面上有关POC和EXP脚本的教程比较稀少,但是比较
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 细嗦Transformer(三):准备训练,讲解及代码实现优化器、学习率调整策略、正则化和KL散度损失
Ace_bb
算法LLMtransformer
文章目录关注我:细嗦大模型批处理对象/BatchesandMasking训练循环主函数/TrainingLoop优化器/Optimizer学习率调整策略/Learningrateadjustmentstrategy样例测试正则化/RegularizationLabelsmoothing标签平滑KL散度损失样例测试Github完整代码----求求了给个star和关注吧参考资料求求了,给个star和关
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi