1.子集合
Given a set of distinct integers, S, return all possible subsets.
Note:
For example,
If S = [1,2,3]
, a solution is:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
这道求子集合的问题,由于其要列出所有结果,按照以往的经验,肯定要是要用递归来做。
// Recursion
class Solution {
public:
vector > subsets(vector &S) {
vector > res;
vector out;
sort(S.begin(), S.end());
getSubsets(S, 0, out, res);
return res;
}
void getSubsets(vector &S, int pos, vector &out, vector > &res) {
res.push_back(out);
for (int i = pos; i < S.size(); ++i) {
out.push_back(S[i]);
getSubsets(S, i + 1, out, res);
out.pop_back();
}
}
};
2.
Given a collection of integers that might contain duplicates, S, return all possible subsets.
Note:
For example,
If S = [1,2,2]
, a solution is:
[
[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]
]
这道子集合之二是之前那道 Subsets 子集合 的延伸,这次输入数组允许有重复项,其他条件都不变,只需要在之前那道题解法的基础上稍加改动便可以做出来,
class Solution {
public:
vector> subsetsWithDup(vector &S) {
if (S.empty()) return {};
vector> res;
vector out;
sort(S.begin(), S.end());
getSubsets(S, 0, out, res);
return res;
}
void getSubsets(vector &S, int pos, vector &out, vector> &res) {
res.push_back(out);
for (int i = pos; i < S.size(); ++i) {
out.push_back(S[i]);
getSubsets(S, i + 1, out, res);
out.pop_back();
while (i + 1 < S.size() && S[i] == S[i + 1]) ++i;
}
}
};
3.
You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols +
and -
. For each integer, you should choose one from +
and -
as its new symbol.
Find out how many ways to assign symbols to make sum of integers equal to target S.
Example 1:
Input: nums is [1, 1, 1, 1, 1], S is 3. Output: 5 Explanation: -1+1+1+1+1 = 3 +1-1+1+1+1 = 3 +1+1-1+1+1 = 3 +1+1+1-1+1 = 3 +1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.
Note:
这道题给了我们一个数组,和一个目标值,让我们给数组中每个数字加上正号或负号,然后求和要和目标值相等,求有多少中不同的情况。那么对于这种求多种情况的问题,我最想到的方法使用递归来做。我们从第一个数字,调用递归函数,在递归函数中,分别对目标值进行加上当前数字调用递归,和减去当前数字调用递归,这样会涵盖所有情况,并且当所有数字遍历完成后,我们看若目标值为0了,则结果res自增1,参见代码如下:
class Solution {
public:
int findTargetSumWays(vector& nums, int S) {
int res = 0;
helper(nums, S, 0, res);
return res;
}
void helper(vector& nums, int S, int start, int& res) {
if (start >= nums.size()) {
if (S == 0) ++res;
return;
}
helper(nums, S - nums[start], start + 1, res);
helper(nums, S + nums[start], start + 1, res);
}
};
4.Combination Sum 组合之和
Given a set of candidate numbers (candidates
) (without duplicates) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sums to target
.
The same repeated number may be chosen from candidates
unlimited number of times.
Note:
target
) will be positive integers.Example 1:
Input: candidates =[2,3,6,7],
target =7
, A solution set is: [ [7], [2,2,3] ]
Example 2:
Input: candidates = [2,3,5],
target = 8,
A solution set is:
[
[2,2,2,2],
[2,3,3],
[3,5]
]
class Solution {
public:
vector> combinationSum(vector& candidates, int target) {
vector> res;
combinationSumDFS(candidates, target, 0, {}, res);
return res;
}
void combinationSumDFS(vector& candidates, int target, int start, vector out, vector>& res) {
if (target < 0) return;
if (target == 0) {res.push_back(out); return;}
for (int i = start; i < candidates.size(); ++i) {
out.push_back(candidates[i]);
combinationSumDFS(candidates, target - candidates[i], i, out, res);
out.pop_back();
}
}
};
5.Combination Sum II 组合之和之二
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is: [1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
这道题跟之前那道 Combination Sum 组合之和 本质没有区别,只需要改动一点点即可,之前那道题给定数组中的数字可以重复使用,而这道题不能重复使用,只需要在之前的基础上修改两个地方即可,首先在递归的for循环里加上if (i > start && num[i] == num[i - 1]) continue; 这样可以防止res中出现重复项,然后就在递归调用combinationSum2DFS里面的参数换成i+1,这样就不会重复使用数组中的数字了,代码如下:
class Solution {
public:
vector > combinationSum2(vector &num, int target) {
vector > res;
vector out;
sort(num.begin(), num.end());
combinationSum2DFS(num, target, 0, out, res);
return res;
}
void combinationSum2DFS(vector &num, int target, int start, vector &out, vector > &res) {
if (target < 0) return;
else if (target == 0) res.push_back(out);
else {
for (int i = start; i < num.size(); ++i) {
if (i > start && num[i] == num[i - 1]) continue;
out.push_back(num[i]);
combinationSum2DFS(num, target - num[i], i + 1, out, res);
out.pop_back();
}
}
}
};
6.Combination Sum III 组合之和之三
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Ensure that numbers within the set are sorted in ascending order.
Example 1:
Input: k = 3, n = 7
Output:
[[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
Credits:
Special thanks to @mithmatt for adding this problem and creating all test cases.
这道题题是组合之和系列的第三道题,跟之前两道 Combination Sum,Combination Sum II 都不太一样,那两道的联系比较紧密,变化不大,而这道跟它们最显著的不同就是这道题的个数是固定的,为k。个人认为这道题跟那道 Combinations 更相似一些,但是那道题只是排序,对k个数字之和又没有要求。所以实际上这道题是它们的综合体,两者杂糅到一起就是这道题的解法了,n是k个数字之和,如果n小于0,则直接返回,如果n正好等于0,而且此时out中数字的个数正好为k,说明此时是一个正确解,将其存入结果res中,具体实现参见代码入下:
class Solution {
public:
vector > combinationSum3(int k, int n) {
vector > res;
vector out;
combinationSum3DFS(k, n, 1, out, res);
return res;
}
void combinationSum3DFS(int k, int n, int level, vector &out, vector > &res) {
if (n < 0) return;
if (n == 0 && out.size() == k) res.push_back(out);
for (int i = level; i <= 9; ++i) {
out.push_back(i);
combinationSum3DFS(k, n - i, i + 1, out, res);
out.pop_back();
}
}
};
7.Combination Sum IV 组合之和之四
Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3] target = 4 The possible combination ways are: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.
这道题是组合之和系列的第四道,我开始想当然的一位还是用递归来解,结果写出来发现TLE了,的确OJ给了一个test case为[4,1,2] 32,这个结果是39882198,用递归需要好几秒的运算时间,实在是不高效,估计这也是为啥只让返回一个总和,而不是返回所有情况,不然机子就爆了。而这道题的真正解法应该是用DP来做,解题思想有点像之前爬梯子的那道题Climbing Stairs,我们需要一个一维数组dp,其中dp[i]表示目标数为i的解的个数,然后我们从1遍历到target,对于每一个数i,遍历nums数组,如果i>=x, dp[i] += dp[i - x]。这个也很好理解,比如说对于[1,2,3] 4,这个例子,当我们在计算dp[3]的时候,3可以拆分为1+x,而x即为dp[2],3也可以拆分为2+x,此时x为dp[1],3同样可以拆为3+x,此时x为dp[0],我们把所有的情况加起来就是组成3的所有情况了,参见代码如下:
class Solution {
public:
int combinationSum4(vector& nums, int target) {
vector dp(target + 1);
dp[0] = 1;
sort(nums.begin(), nums.end());
for (int i = 1; i <= target; ++i) {
for (auto a : nums) {
if (i < a) break;
dp[i] += dp[i - a];
}
}
return dp.back();
}
};