- 【自学笔记】机器学习基础知识点总览-持续更新
Long_poem
笔记机器学习人工智能
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录机器学习重点知识点总览一、机器学习基础概念二、机器学习理论基础三、机器学习算法1.监督学习2.无监督学习3.强化学习四、机器学习处理流程五、机器学习常见问题与解决方法六、机器学习应用领域总结机器学习重点知识点总览一、机器学习基础概念定义:机器学习是一种人工智能技术,通过对数据的学习和分析,让计算机系统自动提高其性能。本质:找到
- 深度学习与图像识别:机器学习基础之回归
Shenrn_
机器学习回归深度学习
1.线性回归1.1一元线性回归1.2多元线性回归2.逻辑回归与线性回归的不同在于其将最终预测值y固定在一个范围之中2.1Sigmoid函数sigmoid函数表达式:p为预测出来的概率,范围在0-1之间,一般用于处理二分类问题,因为这个式子的一个显著特征在于:当z=0,p=0.5当z>0,p>0.5当z<0,p<0.5所以当对z进行多元线性回归表示的时候,以p的值来反映y_pre是一个不错的选择,此
- 【一起看花书1.3】——第5章 机器学习基础
应有光
基础知识机器学习人工智能深度学习
先验是“知识”,是合理的假设本文内容对应于原书的5.7-5.11共5小节内容,其中知识性、结论性的内容偏多,也加入了点个人见解。目录:5.7监督学习5.8无监督学习5.9随机梯度下降5.10构建机器学习算法5.11深度学习发展的动力5.7监督学习监督学习,本质上是复杂函数的拟合,即给定特征xxx,我们需要得到标签yyy,这不就是求一个函数的拟合嘛?线性回归是比较简单的,从高代、概率论就可以理解,甚
- python 学习路线
Coding Happily
python学习windows
学习顺序《python编程:从入门到实践》《Head-FirstPython》《“笨方法”学python3》《PythonCookbook》《Python机器学习基础教程》《FluentPython》《Python编程》《Python编程:从入门到实践》变量变量命名:仅用小写和下划线。变量本质:指向特定的值。字符串在字符串中使用变量:f’{varies1}{varies2}’更早版本:‘{}{}’
- 雷军力荐学 AI,背后隐藏着怎样的时代密码?
羑悻的小杀马特.
AI学习人工智能c++AI大模型社会变化
本文围绕雷军力荐学AI展开,剖析AI发展现状、核心技术,阐述C++在AI的应用,分析AI带来的机遇与挑战,还指明学习路径,强调个人学AI顺应时代且意义重大;欢迎大家阅读丫!!!目录一、本篇背景:二、AI发展现状与趋势:2.1AI发展历程回顾:2.2当前AI应用领域:2.3AI未来发展趋势:三、AI核心技术剖析:3.1机器学习基础:3.2深度学习核心:3.3自然语言处理要点:3.4计算机视觉前沿:3
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- 为什么要学习AI/机器学习
数字沉思
人工智能人工智能学习机器学习
考虑到当前技术发展趋势和未来潜力,我建议重点学习AI/机器学习相关技术,特别是大语言模型(LLM)相关的技术栈。原因如下:1.为什么选择AI/LLM?产业趋势AI正在重塑各个行业投资持续增长应用场景不断扩大技术革新频繁市场需求人才缺口大薪资水平高职业发展空间广创业机会多技术延展性与多个领域结合持续创新空间大知识迁移性强解决实际问题能力强2.推荐学习路线基础知识Python编程机器学习基础深度学习L
- 深度学习篇---深度学习相关知识点&关键名词含义
Ronin-Lotus
深度学习篇深度学习人工智能机器学习pytorchpaddlepaddlepython
文章目录前言第一部分:相关知识点一、基础铺垫层(必须掌握的核心基础)1.数学基础•线性代数•微积分•概率与统计2.编程基础3.机器学习基础二、深度学习核心层(神经网络与训练机制)1.神经网络基础2.激活函数(ActivationFunction)3.损失函数(LossFunction)4.优化算法(Optimization)5.反向传播(Backpropagation)6.正则化与调优三、进阶模型
- 机器学习--概览
kyle~
机器学习机器学习人工智能
一、机器学习基础概念1.定义机器学习(MachineLearning,ML):通过算法让计算机从数据中自动学习规律,并利用学习到的模型进行预测或决策,而无需显式编程。2.与编程的区别传统编程机器学习输入:规则+数据→输出:结果输入:数据+结果→输出:规则需要人工编写逻辑自动发现数据中的模式3.核心要素数据:模型学习的原材料(结构化/非结构化)特征(Feature):数据的可量化属性(如房价预测中的
- Python 机器学习 基础 之 【常用机器学习库】 NumPy 数值计算库
仙魁XAN
Python机器学习基础+实战案例python机器学习numpy数值计算
Python机器学习基础之【常用机器学习库】NumPy数值计算库目录Python机器学习基础之【常用机器学习库】NumPy数值计算库一、简单介绍二、Numpy基础1、安装NumPy2、导入NumPy3、创建数组4、数组操作5、常用函数6、矩阵运算7、广播机制8、随机数三、在机器学习中使用到Numpy的简单示例1、数据预处理1.1数据归一化1.2数据标准化2、特征工程1.1多项式特征3、简单线性回归
- 【DL】神经网络与机器学习基础知识介绍(一)
MengWoods
深度学习机器学习神经网络人工智能
原博客:https://mengwoods.github.io/post/dl/009-dl-fundamental/文章目录基本通用概念梯度下降算法数据工程训练技术偏差与方差防止过拟合评估指标决策树基本通用概念机器学习的类型:监督学习(SupervisedLearning):分类,回归无监督学习(UnsupervisedLearning):聚类,降维强化学习(ReinforcementLearn
- Python前沿技术:机器学习与人工智能
4.0啊
Python人工智能python机器学习
Python前沿技术:机器学习与人工智能一、引言随着科技的飞速发展,机器学习和人工智能(AI)已经成为了计算机科学领域的热门话题。Python作为一门易学易用且功能强大的编程语言,已经成为了这两个领域的首选语言之一。本文将深入探讨Python在机器学习和人工智能领域的应用,以及一些前沿技术和工具。二、Python机器学习基础2.1机器学习概述机器学习是人工智能(AI)的一个关键子集,它的核心在于让
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 机器学习基础(四)——决策树与随机森林
Bayesian小孙
机器学习基础决策树机器学习随机森林
决策树与随机森林文章目录决策树与随机森林一、知识概要(一)二、决策树使用的算法三、sklearn决策树API四、决策树的案例1.数据清洗2.特征工程3.调用决策树API五、集成学习方法-随机森林1.知识概要(二)2.集成学习API3.随机森林的案例importpandasaspdfromsklearn.feature_extractionimportDictVectorizerfromsklear
- 【机器学习基础】Anaconda与Pycharm使用
叫我东方小巴黎
机器学习基础人工智能
这里写目录标题指定py版本安装包指定py版本安装包condaenvlistactivatexxxcondalistpipinstallxxx
- Datawhale X 李宏毅苹果书 AI夏令营|机器学习基础之案例学习
Monyan
人工智能机器学习学习李宏毅深度学习
机器学习(MachineLearning,ML):机器具有学习的能力,即让机器具备找一个函数的能力函数不同,机器学习的类别不同:回归(regression):找到的函数的输出是一个数值或标量(scalar)。例如:机器学习预测某一个时间段内的PM2.5,机器要找到一个函数f,输入是跟PM2.5有关的的指数,输出是明天中午的PM2.5的值。分类(classification):让机器做选择题,先准备
- 应用数学与机器学习基础 - 线性代数篇
绎岚科技
机器学习深度学习机器学习线性代数
线性代数1.标量、向量、矩阵、张量学习线性代数,会涉及以下几个数学概念:标量(scalar):定义:一个标量就是一个单数的数,不同于线性代数中大多数概念会涉及到多个数。表示法:我们用斜体表示标量。标量通常赋予小写的变量名称。当我们介绍标量时,会明确它们是哪种类型的数。比如,在定义实数标量时,我们可能会说”让s∈Rs\in\mathbb{R}s∈R表示一条线的斜率“;在定义自然数标量时,我们可能会说
- 机器学习基础篇(八)——逻辑回归
柚子味的羊
数据分析机器学习机器学习算法逻辑回归
机器学习基础篇(八)——逻辑回归一、简介分类问题是机器学习中常见的一种问题,而逻辑回归则是非常适合二分类问题的一种算法。逻辑回归可以将数据集中的点划分成为两个类别。例如,我们可以将数据分成A类和B类。模型将给出特定数据点属于B类的概率,如果它低于0.5,那么就属于A类。如果高于0.5,那么该数据点属于B类。(大部分情况下阈值设为0.5,特定情况下也可以设置为其他值)举个栗子如图所示,学生考试是否成
- 深度学习如何入门?
nanshaws
yolov5深度学习
深度学习是机器学习的一个子领域,它基于人工神经网络的研究。入门深度学习可以分为以下几个步骤:基础知识准备:(1)掌握基础数学知识,特别是线性代数、概率论和统计学、微积分。(2)学习编程语言,Python是目前最流行的深度学习语言,因其简洁易学且有大量的库支持。(3)了解机器学习基础,包括监督学习和非监督学习的概念、模型评估与选择等。学习深度学习理论:(1)理解神经网络的基本组成,如神经元、激活函数
- 【机器学习基础】正则化
为梦而生~
机器学习机器学习人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习欢迎订阅!后面的内容会越来越有意思~⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!往期推荐:【机器学习基础】机器学习入门(1)【机器学习基础】机器学习入门(2)【机器学习基础】机器学习的基本术语【机器学习基础】机器学习的模型评
- 机器学习基础(一)理解机器学习的本质
昊昊该干饭了
人工智能python机器学习人工智能python
导读:在本文中,将深入探索机器学习的根本原理,包括基本概念、分类及如何通过构建预测模型来应用这些理论。目录机器学习机器学习概念相关概念机器学习根本:模型数据的语言:特征与标签训练与测试:模型评估机器学习的分类监督学习:有指导的学习过程非监督学习:自我探索的过程强化学习:通过试错学习构建与分析鸢尾花数据模型鸢尾花数据集简介加载数据集创建和训练模型进行预测与评估模型机器学习机器学习概念机器学习是人工智
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 四、机器学习基础概念介绍
ITS_Oaij
脑电机器学习机器学习人工智能
四、机器学习基础概念介绍1_机器学习基础概念机器学习分类1.1有监督学习1.2无监督学习2_有监督机器学习—常见评估方法数据集的划分2.1留出法2.2校验验证法(重点方法)简单交叉验证K折交叉验证(单独流出测试集)(常用方法/Sklearn的默认方法)k折交叉验证(不单独留出测试集)留一法交叉验证Subject-wise交叉验证2.3bootstrap自助法3_有监督机器学习—学习评价指标3.1准
- 【机器学习 & 深度学习】开发工具Anaconda的安装与使用
为梦而生~
机器学习python实战机器学习深度学习pythoncondapycharm人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习:相对完整的机器学习基础教学!机器学习python实战:用python带你感受真实的机器学习深度学习:现代人工智能的主流技术介绍往期推荐:【机器学习&深度学习】神经网络简述【机器学习&深度学习】卷积神经网络学习笔记【Python基础&机器学习】Python环境搭建(适合新手阅读的超详细教程)文章目录前言安装Anaconda关于Anaconda的介
- 跨模态行人重识别都需要学什么
ALGORITHM LOL
人工智能
跨模态行人重识别(Cross-ModalityPersonRe-identification,简称Cross-ModalityRe-ID)是计算机视觉领域的一项挑战性任务,旨在跨越不同模态之间(例如,可见光与红外线图像)识别同一行人。该任务涉及图像处理、特征提取、模态转换、深度学习等多个方面。1.基础知识计算机视觉与图像处理:理解图像基础(如像素、色彩空间)、图像变换、图像增强技术。机器学习基础:
- ChatGPT学习大纲
冷暖从容
ChatGPTchatgpt学习人工智能
引言 在2023年2月份左右开始使用ChatGPT时,就被它强大的理解能力和应答效果所折服,这期间一直在断断续续的学习和使用,也没形成一个完整的学习过程,最近刚好有空,就寻思着好好再学习总结一下,故写出了ChatGPT学习系列的文章,供与大家学习交流。第1周-ChatGPT基础知识ChatGPT简介了解ChatGPT的基本功能和应用场景。人工智能与机器学习基础学习AI和机器学习的基本概念,为理解
- 机器学习概述及流程
机智的冷露
机器学习人工智能机器学习python
概述一、目标1、掌握机器学习基础环境安装2、掌握常用的科学计算库对数据进行展示、分析二、人工智能三要素1、数据2、算法2、算力:CPU适合I/O密集型程序,GPU适合计算密集型和易于并行的程序。三、人工智能主要分支1、计算机视觉(CV)2、自然语言处理(NLP):文本挖掘/分类、机器翻译、语音识别3、机器人四、机器学习工作流程简介从数据中自动分析获得模型,再利用模型对未知数据进行预测。1、获取数据
- 机器学习基础——matplotlib.pyplot和seaborn的使用
小螳螂
importmatplotlib.pyplotaspltimportnumpyasnp第一步生成数据集x=np.linspace(-3,3,50)#平均采样,[-3,3]采样50个x.shape(50,)y1=2*x+1y1.shape(50,)y2=x**2y2array([9.00000000e+00,8.28029988e+00,7.59058726e+00,6.93086214e+00,6
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri