Probabilistic Graphical Models 10-708, Spring 2017

https://www.cs.cmu.edu/~epxing/Class/10708-17/slides/lecture1-Introduction.pdf

 

Probabilistic Graphical Models 10-708, Spring 2017_第1张图片

Computational and CS orientated => DK and NF's book

Statistical and easier one => Jordan's book

MLAPP => also a good book

 

Probabilistic Graphical Models 10-708, Spring 2017_第2张图片

HWs => Theory, algorithm design and implementation. Very heavy.

 

N copies of data.

subscript means the dims of features.

 

 

 Probabilistic Graphical Models 10-708, Spring 2017_第3张图片

 

Probabilistic Graphical Models 10-708, Spring 2017_第4张图片 bottom right figures

Probabilistic Graphical Models 10-708, Spring 2017_第5张图片

 

 

a given presentation + inference => enough for some tasks

learn a representation => a more adv. task

 

M* = argmax (m \in M) F(D;m)

M*: best representation

m: one representation

F: score function

D: data

 

Probabilistic Graphical Models 10-708, Spring 2017_第6张图片

 

 Probabilistic Graphical Models 10-708, Spring 2017_第7张图片

 

 one simple case: every random variable X_n is binary: X_n \in {0,1}

Probabilistic Graphical Models 10-708, Spring 2017_第8张图片

O(exp(n)) => bad algorithm

 

↓↓↓↓↓↓↓↓↓↓(invite a biologist)↓↓↓↓↓↓↓↓↓↓↓

categorize

Probabilistic Graphical Models 10-708, Spring 2017_第9张图片

add pathways

Probabilistic Graphical Models 10-708, Spring 2017_第10张图片

 

 Probabilistic Graphical Models 10-708, Spring 2017_第11张图片

18 vs 2^8

 

 Probabilistic Graphical Models 10-708, Spring 2017_第12张图片

A factorization rule. two resources of variables.

Probabilistic Graphical Models 10-708, Spring 2017_第13张图片

 

 

Probabilistic Graphical Models 10-708, Spring 2017_第14张图片

 

 Probabilistic Graphical Models 10-708, Spring 2017_第15张图片

 

 Probabilistic Graphical Models 10-708, Spring 2017_第16张图片

 

 Probabilistic Graphical Models 10-708, Spring 2017_第17张图片

 

 

Probabilistic Graphical Models 10-708, Spring 2017_第18张图片

PGM => conditional distribution

GM => pm.Deterministic

 

Probabilistic Graphical Models 10-708, Spring 2017_第19张图片

 

 If I have P(A,B), how to proof A is independent of B?

Method 1: defactorize P(A,B) = P(A)*P(B)

Method 2: build a graph like the one above, and A and B are automatically independent

 

Probabilistic Graphical Models 10-708, Spring 2017_第20张图片

Probabilistic Graphical Models 10-708, Spring 2017_第21张图片

 

 Probabilistic Graphical Models 10-708, Spring 2017_第22张图片

 

Yellow ⊥  Orange | Graph

the yellow node is only linked to its parents, children, and children's coparents (greeen nodes)

⊥: indenpendency

 

 Probabilistic Graphical Models 10-708, Spring 2017_第23张图片

 

 

 Probabilistic Graphical Models 10-708, Spring 2017_第24张图片

 


 

 

 

 

Probabilistic Graphical Models 10-708, Spring 2017_第25张图片

 

 


 

 

 

 

 Probabilistic Graphical Models 10-708, Spring 2017_第26张图片

DARPA grand challenge

 

Probabilistic Graphical Models 10-708, Spring 2017_第27张图片

NLP

 

Probabilistic Graphical Models 10-708, Spring 2017_第28张图片

biostats

 

 Probabilistic Graphical Models 10-708, Spring 2017_第29张图片

 

 

Probabilistic Graphical Models 10-708, Spring 2017_第30张图片

 

 

Probabilistic Graphical Models 10-708, Spring 2017_第31张图片

 

 

 Probabilistic Graphical Models 10-708, Spring 2017_第32张图片

 

Probabilistic Graphical Models 10-708, Spring 2017_第33张图片

Probabilistic Graphical Models 10-708, Spring 2017_第34张图片

 

 

 

 Probabilistic Graphical Models 10-708, Spring 2017_第35张图片

 

 Probabilistic Graphical Models 10-708, Spring 2017_第36张图片

 

 Probabilistic Graphical Models 10-708, Spring 2017_第37张图片

 

转载于:https://www.cnblogs.com/ecoflex/p/10218100.html

你可能感兴趣的:(Probabilistic Graphical Models 10-708, Spring 2017)