英文链接:File Input and Output using XML and YAML files
cv::FileStorage
, cv::FileNode
或cv::FileNodeIterator
。#include
#include
#include
using namespace cv;
using namespace std;
static void help(char** av)
{
cout << endl
<< av[0] << " shows the usage of the OpenCV serialization functionality." << endl
<< "usage: " << endl
<< av[0] << " outputfile.yml.gz" << endl
<< "The output file may be either XML (xml) or YAML (yml/yaml). You can even compress it by "
<< "specifying this in its extension like xml.gz yaml.gz etc... " << endl
<< "With FileStorage you can serialize objects in OpenCV by using the << and >> operators" << endl
<< "For example: - create a class and have it serialized" << endl
<< " - use it to read and write matrices." << endl;
}
class MyData
{
public:
MyData() : A(0), X(0), id()
{}
explicit MyData(int) : A(97), X(CV_PI), id("mydata1234") // explicit to avoid implicit conversion
{}
void write(FileStorage& fs) const //Write serialization for this class
{
fs << "{" << "A" << A << "X" << X << "id" << id << "}";
}
void read(const FileNode& node) //Read serialization for this class
{
A = (int)node["A"];
X = (double)node["X"];
id = (string)node["id"];
}
public: // Data Members
int A;
double X;
string id;
};
//These write and read functions must be defined for the serialization in FileStorage to work
static void write(FileStorage& fs, const std::string&, const MyData& x)
{
x.write(fs);
}
static void read(const FileNode& node, MyData& x, const MyData& default_value = MyData()){
if(node.empty())
x = default_value;
else
x.read(node);
}
// This function will print our custom class to the console
static ostream& operator<<(ostream& out, const MyData& m)
{
out << "{ id = " << m.id << ", ";
out << "X = " << m.X << ", ";
out << "A = " << m.A << "}";
return out;
}
int main(int ac, char** av)
{
if (ac != 2)
{
help(av);
return 1;
}
string filename = av[1];
{ //write
Mat R = Mat_<uchar>::eye(3, 3),
T = Mat_<double>::zeros(3, 1);
MyData m(1);
FileStorage fs(filename, FileStorage::WRITE);
// or:
// FileStorage fs;
// fs.open(filename, FileStorage::WRITE);
fs << "iterationNr" << 100;
fs << "strings" << "["; // text - string sequence
fs << "image1.jpg" << "Awesomeness" << "../data/baboon.jpg";
fs << "]"; // close sequence
fs << "Mapping"; // text - mapping
fs << "{" << "One" << 1;
fs << "Two" << 2 << "}";
fs << "R" << R; // cv::Mat
fs << "T" << T;
fs << "MyData" << m; // your own data structures
fs.release(); // explicit close
cout << "Write Done." << endl;
}
{//read
cout << endl << "Reading: " << endl;
FileStorage fs;
fs.open(filename, FileStorage::READ);
int itNr;
//fs["iterationNr"] >> itNr;
itNr = (int) fs["iterationNr"];
cout << itNr;
if (!fs.isOpened())
{
cerr << "Failed to open " << filename << endl;
help(av);
return 1;
}
FileNode n = fs["strings"]; // Read string sequence - Get node
if (n.type() != FileNode::SEQ)
{
cerr << "strings is not a sequence! FAIL" << endl;
return 1;
}
FileNodeIterator it = n.begin(), it_end = n.end(); // Go through the node
for (; it != it_end; ++it)
cout << (string)*it << endl;
n = fs["Mapping"]; // Read mappings from a sequence
cout << "Two " << (int)(n["Two"]) << "; ";
cout << "One " << (int)(n["One"]) << endl << endl;
MyData m;
Mat R, T;
fs["R"] >> R; // Read cv::Mat
fs["T"] >> T;
fs["MyData"] >> m; // Read your own structure_
cout << endl
<< "R = " << R << endl;
cout << "T = " << T << endl << endl;
cout << "MyData = " << endl << m << endl << endl;
//Show default behavior for non existing nodes
cout << "Attempt to read NonExisting (should initialize the data structure with its default).";
fs["NonExisting"] >> m;
cout << endl << "NonExisting = " << endl << m << endl;
}
cout << endl
<< "Tip: Open up " << filename << " with a text editor to see the serialized data." << endl;
return 0;
}
这里我们只讨论XML和YAML文件输入。您的输出(及其相应的输入)文件可能只有这些扩展名中的一个,以及由此产生的结构。它们是两种可以序列化的数据结构:映射(如STL映射和Python字典)和元素序列(如STL向量)。它们之间的区别在于,在映射中,每个元素都有一个惟一的名称。对于序列,您需要遍历它们以查询特定的项。
1、XML/YAML文件打开和关闭。在向这些文件写入任何内容之前,您需要打开它,并在结束时关闭它。OpenCV中的XML/YAML数据结构是cv::FileStorage。要指定这个文件绑定到你硬盘上的结构,你可以使用它的构造函数或者open()函数:
FileStorage fs(filename, FileStorage::WRITE);
// or:
// FileStorage fs;
// fs.open(filename, FileStorage::WRITE);
第二个参数是一个常量,指定可以对它们进行的操作类型:写、读或追加( WRITE, READ or APPEND.)。文件名中指定的扩展名还决定将使用的输出格式。如果指定扩展名*.xml.gz*,则输出甚至可能被压缩。
当cv::FileStorage对象被销毁时,文件自动关闭。但是,你可以使用release函数来显式调用:
fs.release(); // explicit close
2、文本和数字的输入和输出。在c++中,数据结构使用STL库中的<<
输出操作符。在Python中,使用的是cv::FileStorage::write()
。为了输出任何类型的数据结构,我们首先需要指定它的名称。我们通过简单地在c++中将其名称推入流来实现这一点。在Python中,write函数的第一个参数是名称。对于基本类型,你可以按照这个值的打印:
fs << "iterationNr" << 100;
读入是一个简单的寻址(通过[]
操作符)和转换操作,或者是通过>>
操作符读取。在Python中,我们使用getNode()和real()进行地址处理:
int itNr;
//fs["iterationNr"] >> itNr;
itNr = (int) fs["iterationNr"];
3、OpenCV数据结构的输入/输出。好吧,这些行为就像基本的c++和Python类型:
Mat R = Mat_<uchar>::eye(3, 3),
T = Mat_<double>::zeros(3, 1);
fs << "R" << R; // cv::Mat
fs << "T" << T;
fs["R"] >> R; // Read cv::Mat
fs["T"] >> T;
4、向量(数组)和关联映射的输入/输出。如前所述,我们还可以输出映射和序列(数组、向量)。同样,我们首先打印变量的名称,然后指定输出是序列还是映射。
对于第一个元素之前的序列打印"[“字符,最后一个元素之后打印”]"字符。使用Python调用FileStorage。startWriteStruct(structure_name, struct_type)
,其中struct_type为cv2。FileNode_MAP或cv2。FileNode_SEQ开始写入结构。调用FileStorage.endWriteStruct()
完成结构:
fs << "strings" << "["; // text - string sequence
fs << "image1.jpg" << "Awesomeness" << "../data/baboon.jpg";
fs << "]"; // close sequence
对于映射,演示是相同的,但是现在我们使用“{”和“}”分隔符:
fs << "Mapping"; // text - mapping
fs << "{" << "One" << 1;
fs << "Two" << 2 << "}";
要从中读取,我们使用cv::FileNode
和cv::FileNodeIterator
数据结构。FileStorage
类的[]
操作符(或Python中的getNode()
函数)返回一个cv::FileNode
数据类型。如果节点是顺序的,我们可以使用cv::FileNodeIterator
来遍历这些项。在Python中,at()
函数可以用来处理序列中的元素,size()
函数可以返回序列的长度:
FileNode n = fs["strings"]; // Read string sequence - Get node
if (n.type() != FileNode::SEQ)
{
cerr << "strings is not a sequence! FAIL" << endl;
return 1;
}
FileNodeIterator it = n.begin(), it_end = n.end(); // Go through the node
for (; it != it_end; ++it)
cout << (string)*it << endl;
对于映射,你可以再次使用[]
操作符(Python中的at()
函数)来访问给定的项(或者使用>>
操作符):
n = fs["Mapping"]; // Read mappings from a sequence
cout << "Two " << (int)(n["Two"]) << "; ";
cout << "One " << (int)(n["One"]) << endl << endl;
5、读写自己的数据结构。假设你有一个数据结构,例如:
class MyData
{
public:
MyData() : A(0), X(0), id() {}
public: // Data Members
int A;
double X;
string id;
};
在c++中,可以通过OpenCV I/O XML/YAML接口(就像在OpenCV数据结构中一样)在类内部和外部添加一个读和写函数来序列化它。在Python中,您可以通过在类内部实现一个读和写函数来接近这一点。对于里面部分:
void write(FileStorage& fs) const //Write serialization for this class
{
fs << "{" << "A" << A << "X" << X << "id" << id << "}";
}
void read(const FileNode& node) //Read serialization for this class
{
A = (int)node["A"];
X = (double)node["X"];
id = (string)node["id"];
}
在c++中,需要在类外添加以下函数定义:
static void write(FileStorage& fs, const std::string&, const MyData& x)
{
x.write(fs);
}
static void read(const FileNode& node, MyData& x, const MyData& default_value = MyData()){
if(node.empty())
x = default_value;
else
x.read(node);
}
在这里,您可以看到,在read部分中,我们定义了用户尝试读取一个不存在的节点时会发生什么。在本例中,我们只返回默认的初始化值,但是更详细的解决方案是为实例返回一个- 1的对象ID值。
一旦你添加了这四个函数,使用>>
操作符写和<<
操作符读(或Python定义的输入/输出函数):
MyData m(1);
fs << "MyData" << m; // your own data structures
fs["MyData"] >> m; // Read your own structure_
或者尝试读取一个不存在的read:
cout << "Attempt to read NonExisting (should initialize the data structure with its default).";
fs["NonExisting"] >> m;
cout << endl << "NonExisting = " << endl << m << endl;
大多数情况下,我们只是把定义好的数字打印出来。在您的控制台屏幕上可以看到:
Write Done.
Reading:
100image1.jpg
Awesomeness
baboon.jpg
Two 2; One 1
R = [1, 0, 0;
0, 1, 0;
0, 0, 1]
T = [0; 0; 0]
MyData =
{ id = mydata1234, X = 3.14159, A = 97}
Attempt to read NonExisting (should initialize the data structure with its default).
NonExisting =
{ id = , X = 0, A = 0}
Tip: Open up output.xml with a text editor to see the serialized data.
不过,在输出xml文件中看到的内容更有趣:
<?xml version="1.0"?>
<opencv_storage>
<iterationNr>100</iterationNr>
<strings>
image1.jpg Awesomeness baboon.jpg</strings>
<Mapping>
<One>1</One>
<Two>2</Two></Mapping>
<R type_id="opencv-matrix">
<rows>3</rows>
<cols>3</cols>
<dt>u</dt>
<data>
1 0 0 0 1 0 0 0 1</data></R>
<T type_id="opencv-matrix">
<rows>3</rows>
<cols>1</cols>
<dt>d</dt>
<data>
0. 0. 0.</data></T>
<MyData>
<A>97</A>
<X>3.1415926535897931e+000</X>
<id>mydata1234</id></MyData>
</opencv_storage>
或YAML文件:
%YAML:1.0
iterationNr: 100
strings:
- "image1.jpg"
- Awesomeness
- "baboon.jpg"
Mapping:
One: 1
Two: 2
R: !!opencv-matrix
rows: 3
cols: 3
dt: u
data: [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]
T: !!opencv-matrix
rows: 3
cols: 1
dt: d
data: [ 0., 0., 0. ]
MyData:
A: 97
X: 3.1415926535897931e+000
id: mydata1234