使用XML和YAML文件的 文件输入和输出

英文链接:File Input and Output using XML and YAML files

文章目录

    • 目标
    • 源码
    • 解释
    • 结果

目标

  • 如何打印和读取文本条目到文件 和 OpenCV使用YAML或XML文件?
  • 如何为OpenCV数据结构做同样的事情?
  • 如何为你的数据结构做到这一点?
  • 使用OpenCV数据结构,如cv::FileStorage, cv::FileNodecv::FileNodeIterator

源码

#include 
#include 
#include 
using namespace cv;
using namespace std;
static void help(char** av)
{
    cout << endl
        << av[0] << " shows the usage of the OpenCV serialization functionality."         << endl
        << "usage: "                                                                      << endl
        <<  av[0] << " outputfile.yml.gz"                                                 << endl
        << "The output file may be either XML (xml) or YAML (yml/yaml). You can even compress it by "
        << "specifying this in its extension like xml.gz yaml.gz etc... "                  << endl
        << "With FileStorage you can serialize objects in OpenCV by using the << and >> operators" << endl
        << "For example: - create a class and have it serialized"                         << endl
        << "             - use it to read and write matrices."                            << endl;
}
class MyData
{
public:
    MyData() : A(0), X(0), id()
    {}
    explicit MyData(int) : A(97), X(CV_PI), id("mydata1234") // explicit to avoid implicit conversion
    {}
    void write(FileStorage& fs) const                        //Write serialization for this class
    {
        fs << "{" << "A" << A << "X" << X << "id" << id << "}";
    }
    void read(const FileNode& node)                          //Read serialization for this class
    {
        A = (int)node["A"];
        X = (double)node["X"];
        id = (string)node["id"];
    }
public:   // Data Members
    int A;
    double X;
    string id;
};
//These write and read functions must be defined for the serialization in FileStorage to work
static void write(FileStorage& fs, const std::string&, const MyData& x)
{
    x.write(fs);
}
static void read(const FileNode& node, MyData& x, const MyData& default_value = MyData()){
    if(node.empty())
        x = default_value;
    else
        x.read(node);
}
// This function will print our custom class to the console
static ostream& operator<<(ostream& out, const MyData& m)
{
    out << "{ id = " << m.id << ", ";
    out << "X = " << m.X << ", ";
    out << "A = " << m.A << "}";
    return out;
}
int main(int ac, char** av)
{
    if (ac != 2)
    {
        help(av);
        return 1;
    }
    string filename = av[1];
    { //write
        Mat R = Mat_<uchar>::eye(3, 3),
            T = Mat_<double>::zeros(3, 1);
        MyData m(1);
        FileStorage fs(filename, FileStorage::WRITE);
        // or:
        // FileStorage fs;
        // fs.open(filename, FileStorage::WRITE);
        fs << "iterationNr" << 100;
        fs << "strings" << "[";                              // text - string sequence
        fs << "image1.jpg" << "Awesomeness" << "../data/baboon.jpg";
        fs << "]";                                           // close sequence
        fs << "Mapping";                              // text - mapping
        fs << "{" << "One" << 1;
        fs <<        "Two" << 2 << "}";
        fs << "R" << R;                                      // cv::Mat
        fs << "T" << T;
        fs << "MyData" << m;                                // your own data structures
        fs.release();                                       // explicit close
        cout << "Write Done." << endl;
    }
    {//read
        cout << endl << "Reading: " << endl;
        FileStorage fs;
        fs.open(filename, FileStorage::READ);
        int itNr;
        //fs["iterationNr"] >> itNr;
        itNr = (int) fs["iterationNr"];
        cout << itNr;
        if (!fs.isOpened())
        {
            cerr << "Failed to open " << filename << endl;
            help(av);
            return 1;
        }
        FileNode n = fs["strings"];                         // Read string sequence - Get node
        if (n.type() != FileNode::SEQ)
        {
            cerr << "strings is not a sequence! FAIL" << endl;
            return 1;
        }
        FileNodeIterator it = n.begin(), it_end = n.end(); // Go through the node
        for (; it != it_end; ++it)
            cout << (string)*it << endl;
        n = fs["Mapping"];                                // Read mappings from a sequence
        cout << "Two  " << (int)(n["Two"]) << "; ";
        cout << "One  " << (int)(n["One"]) << endl << endl;
        MyData m;
        Mat R, T;
        fs["R"] >> R;                                      // Read cv::Mat
        fs["T"] >> T;
        fs["MyData"] >> m;                                 // Read your own structure_
        cout << endl
            << "R = " << R << endl;
        cout << "T = " << T << endl << endl;
        cout << "MyData = " << endl << m << endl << endl;
        //Show default behavior for non existing nodes
        cout << "Attempt to read NonExisting (should initialize the data structure with its default).";
        fs["NonExisting"] >> m;
        cout << endl << "NonExisting = " << endl << m << endl;
    }
    cout << endl
        << "Tip: Open up " << filename << " with a text editor to see the serialized data." << endl;
    return 0;
}

解释

这里我们只讨论XML和YAML文件输入。您的输出(及其相应的输入)文件可能只有这些扩展名中的一个,以及由此产生的结构。它们是两种可以序列化的数据结构:映射(如STL映射和Python字典)和元素序列(如STL向量)。它们之间的区别在于,在映射中,每个元素都有一个惟一的名称。对于序列,您需要遍历它们以查询特定的项。

1、XML/YAML文件打开和关闭。在向这些文件写入任何内容之前,您需要打开它,并在结束时关闭它。OpenCV中的XML/YAML数据结构是cv::FileStorage。要指定这个文件绑定到你硬盘上的结构,你可以使用它的构造函数或者open()函数:

        FileStorage fs(filename, FileStorage::WRITE);
        // or:
        // FileStorage fs;
        // fs.open(filename, FileStorage::WRITE);

第二个参数是一个常量,指定可以对它们进行的操作类型:写、读或追加( WRITE, READ or APPEND.)。文件名中指定的扩展名还决定将使用的输出格式。如果指定扩展名*.xml.gz*,则输出甚至可能被压缩。

当cv::FileStorage对象被销毁时,文件自动关闭。但是,你可以使用release函数来显式调用:

        fs.release();                                       // explicit close

2、文本和数字的输入和输出。在c++中,数据结构使用STL库中的<<输出操作符。在Python中,使用的是cv::FileStorage::write()。为了输出任何类型的数据结构,我们首先需要指定它的名称。我们通过简单地在c++中将其名称推入流来实现这一点。在Python中,write函数的第一个参数是名称。对于基本类型,你可以按照这个值的打印:

        fs << "iterationNr" << 100;

读入是一个简单的寻址(通过[]操作符)和转换操作,或者是通过>>操作符读取。在Python中,我们使用getNode()和real()进行地址处理:

        int itNr;
        //fs["iterationNr"] >> itNr;
        itNr = (int) fs["iterationNr"];

3、OpenCV数据结构的输入/输出。好吧,这些行为就像基本的c++和Python类型:

        Mat R = Mat_<uchar>::eye(3, 3),
            T = Mat_<double>::zeros(3, 1);
      
        fs << "R" << R;                                      // cv::Mat
        fs << "T" << T;
      
        fs["R"] >> R;                                      // Read cv::Mat
        fs["T"] >> T;

4、向量(数组)和关联映射的输入/输出。如前所述,我们还可以输出映射和序列(数组、向量)。同样,我们首先打印变量的名称,然后指定输出是序列还是映射。

对于第一个元素之前的序列打印"[“字符,最后一个元素之后打印”]"字符。使用Python调用FileStorage。startWriteStruct(structure_name, struct_type),其中struct_type为cv2。FileNode_MAP或cv2。FileNode_SEQ开始写入结构。调用FileStorage.endWriteStruct()完成结构:

        fs << "strings" << "[";                              // text - string sequence
        fs << "image1.jpg" << "Awesomeness" << "../data/baboon.jpg";
        fs << "]";                                           // close sequence

对于映射,演示是相同的,但是现在我们使用“{”和“}”分隔符:

        fs << "Mapping";                              // text - mapping
        fs << "{" << "One" << 1;
        fs <<        "Two" << 2 << "}";

要从中读取,我们使用cv::FileNodecv::FileNodeIterator数据结构。FileStorage类的[]操作符(或Python中的getNode()函数)返回一个cv::FileNode数据类型。如果节点是顺序的,我们可以使用cv::FileNodeIterator来遍历这些项。在Python中,at()函数可以用来处理序列中的元素,size()函数可以返回序列的长度:

        FileNode n = fs["strings"];                         // Read string sequence - Get node
        if (n.type() != FileNode::SEQ)
        {
            cerr << "strings is not a sequence! FAIL" << endl;
            return 1;
        }
        FileNodeIterator it = n.begin(), it_end = n.end(); // Go through the node
        for (; it != it_end; ++it)
            cout << (string)*it << endl;

对于映射,你可以再次使用[]操作符(Python中的at()函数)来访问给定的项(或者使用>>操作符):

        n = fs["Mapping"];                                // Read mappings from a sequence
        cout << "Two  " << (int)(n["Two"]) << "; ";
        cout << "One  " << (int)(n["One"]) << endl << endl;

5、读写自己的数据结构。假设你有一个数据结构,例如:

class MyData
{
public:
      MyData() : A(0), X(0), id() {}
public:   // Data Members
   int A;
   double X;
   string id;
};

在c++中,可以通过OpenCV I/O XML/YAML接口(就像在OpenCV数据结构中一样)在类内部和外部添加一个读和写函数来序列化它。在Python中,您可以通过在类内部实现一个读和写函数来接近这一点。对于里面部分:

    void write(FileStorage& fs) const                        //Write serialization for this class
    {
        fs << "{" << "A" << A << "X" << X << "id" << id << "}";
    }
    void read(const FileNode& node)                          //Read serialization for this class
    {
        A = (int)node["A"];
        X = (double)node["X"];
        id = (string)node["id"];
    }

在c++中,需要在类外添加以下函数定义:

static void write(FileStorage& fs, const std::string&, const MyData& x)
{
    x.write(fs);
}
static void read(const FileNode& node, MyData& x, const MyData& default_value = MyData()){
    if(node.empty())
        x = default_value;
    else
        x.read(node);
}

在这里,您可以看到,在read部分中,我们定义了用户尝试读取一个不存在的节点时会发生什么。在本例中,我们只返回默认的初始化值,但是更详细的解决方案是为实例返回一个- 1的对象ID值。

一旦你添加了这四个函数,使用>>操作符写和<<操作符读(或Python定义的输入/输出函数):

        MyData m(1);
        
        fs << "MyData" << m;                                // your own data structures
        
        fs["MyData"] >> m;                                 // Read your own structure_

或者尝试读取一个不存在的read:

        cout << "Attempt to read NonExisting (should initialize the data structure with its default).";
        fs["NonExisting"] >> m;
        cout << endl << "NonExisting = " << endl << m << endl;

结果

大多数情况下,我们只是把定义好的数字打印出来。在您的控制台屏幕上可以看到:

Write Done.
Reading:
100image1.jpg
Awesomeness
baboon.jpg
Two  2; One  1
R = [1, 0, 0;
  0, 1, 0;
  0, 0, 1]
T = [0; 0; 0]
MyData =
{ id = mydata1234, X = 3.14159, A = 97}
Attempt to read NonExisting (should initialize the data structure with its default).
NonExisting =
{ id = , X = 0, A = 0}
Tip: Open up output.xml with a text editor to see the serialized data.

不过,在输出xml文件中看到的内容更有趣:

<?xml version="1.0"?>
<opencv_storage>
<iterationNr>100</iterationNr>
<strings>
  image1.jpg Awesomeness baboon.jpg</strings>
<Mapping>
  <One>1</One>
  <Two>2</Two></Mapping>
<R type_id="opencv-matrix">
  <rows>3</rows>
  <cols>3</cols>
  <dt>u</dt>
  <data>
    1 0 0 0 1 0 0 0 1</data></R>
<T type_id="opencv-matrix">
  <rows>3</rows>
  <cols>1</cols>
  <dt>d</dt>
  <data>
    0. 0. 0.</data></T>
<MyData>
  <A>97</A>
  <X>3.1415926535897931e+000</X>
  <id>mydata1234</id></MyData>
</opencv_storage>

或YAML文件:

%YAML:1.0
iterationNr: 100
strings:
   - "image1.jpg"
   - Awesomeness
   - "baboon.jpg"
Mapping:
   One: 1
   Two: 2
R: !!opencv-matrix
   rows: 3
   cols: 3
   dt: u
   data: [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ]
T: !!opencv-matrix
   rows: 3
   cols: 1
   dt: d
   data: [ 0., 0., 0. ]
MyData:
   A: 97
   X: 3.1415926535897931e+000
   id: mydata1234

你可能感兴趣的:(OpenCV)